Ֆրարեմատիկա

I, 1966, № 3

Математика

к. д. затуловская

АНАЛИТИЧЕСКИЕ F-МОНОГЕННЫЕ ФУНКЦИИ

Введение

Назовем алгеброй A какую-нибудь ассоциативно-коммутативную алгебру с единицей и с конечным базисом над полем комплексных чисел (или же A есть поле комплексных чисел). Мы нормируем алгебру A, полагая для всякого элемента $a \in A$: $|a| = \sqrt{|a_1|^2 + \cdots + |a_r|^2}$, где a_1, \cdots, a_r —комплексные компоненты элемента a. Имеем для любой пары элементов a, $b \in A$: $|ab| \leqslant N|a||b|$, где $N \gg 1$ [2]. Всюду в дальнейшем через N обозначаем только эту постоянную.

Пусть f и t—непрерывно-дифференцируемые функции многих действительных переменных

$$x_1, \cdots, x_s \quad (S \geqslant 2)$$
 (1)

со значениями из данной алгебры А.

Назовем функцию f F-моногенной (моногенной в смысле B. C. Федорова [1], [2]) в области Δ , если найдется функция переменных (1), которую мы обозначим через $f^{(1)}$, такая, что в данной области $\Delta df = f^{(1)} dt$; $f^{(1)}$ называется F-производной функции f.

Для однозначного выбора функции $f^{(1)}$ допустим возможность деления элемента алгебры A на какую-нибудь одну частную производную первого порядка от t всюду в Δ .

Множество всех F-моногенных относительно t функций в области Δ обозначаем через (t, Δ, A) .

Аналогично определяются F-производные различных порядков, обозначаемые $f^{(n)}$, $n=2, 3, \cdots$, а именно, имеем

$$df^{(n)} = f^{(n+1)} dt,$$

ECAH $f^{(n)} \in (t, \Delta, A)$.

Примеры

- 1) Пусть $f=z^5$, $t=z^3$, $z=x_1+ix_2$, $i^2=-1$, S=2. Здесь $f^{(1)}=\frac{5}{3}\,z^2$; f—многозначная функция от t в любой окрестности точки z=0, F—моногенная по t в этой окрестности.
- 2) Пусть $f = x_1 + \dots + x_S$, $t = ae^{fl}$, $t^2 = -1$, где a—постоя нная, принадлежащая A и имеющая обратный $-a^{-1}$.

Имеем

$$df = \frac{1}{ti} dt, \quad f^{(1)} = \frac{1}{ti} \cdots$$

f—многозначная функция от t, так как t имеет одно и то же значение на всех следующих гиперплоскостях:

$$x_1 + \cdots + x_s = \alpha + 2k\pi, \ k = 0, 1, \cdots,$$

 α —действительное число, а f принимает разные значения на различных плоскостях.

Всюду в дальнейшем будем предполагать, что для каждой точки области Δ найдется координата из (1), которую обозначим через x_2 , такая, что в этой точке существует $\left(\frac{\partial t}{\partial x}\right)^{-1}$.

Одним из основных и мало разработанных вопросов в теории F—моногенных функций является вопрос о характере зависимости. Функции f от функции t, если $f \in (t, \Delta, A)$.

Определение. Функция f, моногенная по t в области Δ , называется аналитической однозначной функцией от t в этой области, если существуют F-производные от f любого порядка* и в некоторо \mathbb{Z} . окрестности $\Delta(P)$ каждой точки $P \in \Delta$

$$f^{(n)} = \sum_{k=n}^{\infty} \frac{f_0^{(n)} (t-t_0)^{k-n}}{(k-n)!}, \quad n=0, 1, 2, \cdots$$

 $(f_0^{(k)}, t_0$ —значения $f^{(k)}$ и t в точке P), причем все эти ряды абсолютно и равномерно сходятся в $\Delta(P)$.

В. С. Федоров [1], считая все компоненты функций f и t аналитическими (в обычном смысле): от координат (1) в Δ , доказал, что f—одновначная аналитическая функция от t в этой области при следующем дополнительном условии:

$$\left|\frac{\partial^n U}{\partial x^n}\right| < AB^n$$
, $n = 0, 1, \dots, U \equiv \left(\frac{\partial t}{\partial x}\right)^{-1}$, $A, B = \text{const.}$

В настоящей работе мы обобщаем эту теорему В. С. Федорова освобождаясь от этого дополнительного условия (§ 2, "Основная теорема").

Заметим, что функция f может быть аналитической однозначной функцией от t (в вышеуказанном смысле) и в том случае, когда f и t не имеют непрерывных частных производных порядка выше первого по переменным (1). Например, f—любой полином от t, причем t в некоторой области Δ имеет непрерывные частные производные первого порядка по переменным (1).

 $^{^{}ullet}$ Это будет иметь место, если все компоненты функций f и t бесконечно дифференцируемы по переменным (1) в Δ . Условие это достаточное, но не необходимое [2].

1 Пусть $f \in (t, \Delta, A)$. Всюду в дальнейшем полагаем

$$D = \frac{\partial}{\partial x}$$
, $\lambda = \frac{\partial t}{\partial x}$, $D^{0}\lambda = \lambda$.

Пусть все компоненты функций f и t аналитичны относительно координат (1) в Δ . Тогда, как известно, для всякой заданной ограниченной и замкнутой области Δ_0 , расположенной строго внутри Δ , найдутся для данных f и t такие постоянные a>1, b>1, C>1, что в Δ_0

$$|D^{k_{j_{k}}}| < ab^{k}k!, |D^{k}f| < ab^{k}k!, |\lambda^{-1}| < C, k = 0, 1, \cdots$$
 (2)

Всюду в дальнейшем рассматриваем значения изучаемых функций и их производных в такой области Δ_0 , что всякий раз не оговариваем.

Назовем произведением класса "к" произведение вида

$$\prod_{j=1}^{\kappa} D^{m_j} v_j \qquad (v_1 = f, \ v_j = k, \ j = 2, \cdots, k), \tag{3}$$

взятое со знаком + или -, где m_1 —целое положительное число, m_2, \cdots, m_k —целые неотрицательные числа (не обязательно попарно различные), подчиненные единственному условию: $m_1 + \cdots + m_k = k$. Отметим очевидное свойство F-производных функции f

$$f^{(n)} = \frac{1}{\lambda} Df^{(n-1)}, \quad n = 1, 2, \cdots,$$

$$f^{(1)} = \frac{1}{\lambda} Df,$$

$$f^{(2)} = \frac{1}{\lambda^{3}} (\lambda^{2} D^{2} f - D\lambda \cdot Df)$$
(4)

Теорема 1. Справедливо следующее представление:

$$f^{(n)} = \lambda^{1-2n} \varphi_n, \varphi_n = \sum_{j=1}^m \alpha_j, \quad n = 1, 2...$$
(5)

где каждое ², есть произведение класса "п", т—некоторое натуральное число, большее или равное единице.

A оказательство. 1) Теорема верна для n=1, что следует из (4).

2) Пусть теорема справедлива для некоторого n, докажем ее для n+1.

Из (4) и (5) имеем

$$f^{(n+1)} = \frac{1}{\lambda} Df^{(n)} = \lambda^{1-2n-2} [\lambda D\varphi_n - (2n-1) \varphi_n D\lambda].$$
 (6)

Легко видеть, поскольку теорема верна для n, что выражение внутри прямых скобок в правой части уравнения (6) есть сумма произведений класса "n+1". Из представления (6) следует также справедливость теоремы для n+1. Теорема доказана.

 2° . Основная теорема. Если все компоненты f и t есть аналитические функции переменных (1) в некоторой области Δ , в которой f-F-моногенна относительно t, тогда в некоторой окрестности каждой точки указанной области f есть аналитическая функция от t.

Доказательство. 1. Из (4) и (5) следует, что

$$\varphi_{n+1} = \sum_{i=1}^{m} [i D \alpha_{i} - (2n-1) \alpha_{i} D i].$$
 (7)

Исходя из выражения $\varphi_1 = Df$ строим для $n = 2, 3, \cdots$, с помощью равенства (7), упорядоченную систему $(\alpha_1, \alpha_2, \cdots, \alpha_m)$ произведений класса "n", которая определяет функцию φ_n формулы (5): $\varphi_n = \alpha_1 + \cdots + \alpha_m$.

Пусть, теперь, P_k —любое произведение вида (3) класса "k" ($k=1, 2, \cdots$). Введем обозначения:

$$\sigma(P_k) = m_1! \ m_2! \cdots m_k!,$$

$$\sigma(\varphi_k) = \sigma(\alpha_1) + \cdots + \sigma(\alpha_m),$$

$$\sigma(\lambda DP_k) = \sum_{k=0}^{k} \sigma(\beta_q),$$
(8)

где

$$\beta_{1} = \lambda \left(D^{m_{1}+1} V_{1} \right) \prod_{j=2}^{k} D^{m_{j}} V_{j}, \quad \beta_{k} = \lambda \left(D^{m_{k}+1} V_{k} \right) \prod_{j=1}^{k-1} D^{m_{j}} V_{j},$$

$$\beta_{q} = \lambda \left(D^{m_{q}+1} V_{q} \right) \prod_{j=1}^{q-1} D^{m_{j}} V_{j} \prod_{l=q+1}^{k} D^{m_{j}} V_{j}, \quad q = 2, \dots, k-1.$$

Очевидно, имеем

$$\sigma(\beta_q) = (m_q + 1) \sigma(P_k), \quad q = 1, \dots, k, \quad \sum_{q=1}^k (m_q + 1) = 2k,$$

а повтому $\sigma(\lambda DP_k) = 2k\sigma(P_k)$, откуда

$$\sigma(\lambda Da_j) = 2n\sigma(a_j).$$

Легко также видеть, что $\sigma(\alpha_i D_i) = \sigma(\alpha_i), i = 1, \cdots, m$.

Из (7), (8) получаем

$$\sigma(\varphi_{n+1}) < 4n \sigma(\varphi_n), \qquad n = 1, 2, \cdots.$$
 (9)

Так как, в силу (4), $\sigma(\varphi_1) = \sigma(Df) = 1$, то из неравенства (9) получим, полагая последовательно $n = 2, 3, \cdots$

$$z(\gamma_n) \leq 4^{n-1} (n-1)!, \quad n=1, 2, \cdots.$$
 (10)

 \mathcal{A} алее, из (2) и (8) следует, что для всякого произведения класса "k" имеем

$$|P_k| < (ab)^k N^{k-1} \sigma(P_k),$$

откуда, в силу теоремы 1 и равенства (8), получим

$$|\varphi_n| \leq \sum_{j=1}^n |\alpha_j| < (ab)^n N^{n-1} \circ (\varphi_n).$$

Из последнего неравенства и из (10) находим

$$|\varphi_n| \leq (4N)^{n-1} (ab)^n (n-1)!, \quad n=1, 2, \cdots,$$

а так как из (2) и (5) имеем

$$|f^{(n)}| < N^{2n} C^{2n-1} |\varphi_n|, \quad n=1, 2, \cdots,$$

TO

$$|f^{(n)}| < M^n n!, n = 1, 2, \cdots,$$

где М-некоторая постоянная, не зависящая от п.

II. Из последних неравенств следует, что для каждой данной точки $P \in \Delta$ найдется такая ее окрестность $\Delta (P)$, в которой абсолютно и равномерно сходятся ряды

$$S = \sum_{k=1}^{\infty} U_k$$
, $S_n = \sum_{k=n}^{\infty} U_k^{(n)}$, $n = 1, 2, \cdots$,

где $U_k = f_0^{(k)} \frac{(t-t_0)^k}{k!}$, $f_0^{(k)}$, t_0 —значения F-производных функции f порядка k и функции t в точке P, соответственно, а $U_k^{(n)} - F$ -производная порядка n от U_k , $k=1, 2, \cdots$. В самом деле, полагая $|t-t_0|=\rho$, получим

$$|U_k| < N^k M^k \rho^k, \qquad k = 1, 2, \cdots.$$

Пусть $\widetilde{\Delta}-$ область, содержащаяся в Δ , такая, что для всех ее точек $\rho < CR$, $R=\frac{1}{MN}$, 0 < C < 1, C= const. При $\rho < R$ схо-

дится ряд: $\sigma = \sum_{k=1}^{\infty} (B\rho)^k$, где B = MN. Пусть $\rho = CR$. Найдется такое

число $\delta > 0$, что $\rho_1 + \delta < R$. Таким образом, $\sum_{k=0}^{\infty} (B\rho_1)^k < \infty$,

$$\sum_{k=0}^{\infty} B^k (\rho_1 + \delta)^k < \infty,$$

откуда

$$\sum_{k=0}^{\infty} B^k \left[(\rho_1 + \delta)^k - \rho_1^k \right] < \infty.$$

Из очевидного неравенства

$$(\rho_1+\sigma)^k-\rho_1^k>\frac{k!}{n!(k-n)!}\rho_1^{k-n}\sigma^n \qquad (k\gg n)$$

имеем

$$\frac{k!}{(k-n)!} \rho_1^{k-n} < \frac{n!}{\delta^n} \left[(\rho_1 + \delta)^k - \rho_1^k \right] \quad (k \gg n),$$

и потому ряд

$$\sum_{k=n}^{\infty} B^{k} - \frac{k!}{(k-n)!} \varphi_{1}^{k-n} < \infty, \qquad n = 1, 2, \dots,$$

откуда следует равномерная сходимость ряда

$$\sigma_n \equiv \sum_{k=n}^{\infty} B^k \; rac{k!}{(k-n)!} \; \varrho^{k-n} \quad \text{and} \quad \varrho \leqslant \varrho_1, \quad n=1, \; 2, \cdot \cdot \cdot.$$

В качестве области Δ возьмем достаточно малый фиксированный шар с центром в точке P. Пусть $\Delta(P)$ есть этот шар. Ряд σ_n , равномерно сходящийся в этом шаре, мажорирует ряд S_n . Следовательно, в этом шаре абсолютно и равномерно сходится ряд S_n для всякого n. В этом шаре сходится равномерно и абсолютно и ряд S_n , ибо сходится там равномерно ряд σ_n , мажорирующий σ_n .

Поэтому, полагая

$$\theta = \sum_{k=0}^{\infty} U_k,$$

получим, что θ моногенна по t в Δ (P) и для ее F-производной поряд-

$$\theta^{(n)} = \sum_{k=n}^{\infty} U_k^{(n)}, \qquad n=1, 2, \cdots.$$

Этот результат вытекает из следующей теоремы автора.

Очевидно, имеем

$$\theta_0^{(n)} = f_0^{(n)}, \qquad n = 0, 1, 2, \cdots$$
 (11)

Как известно (см. [2], стр. 366), из (11) следует, что f и θ совпадают в $\Delta(P)$.

Теорема доказана.

Ивановский энергетический институт

Կ. Դ.: ԶԱՏՈՒԼՈՎՕԿԱՑԱ

F-ՄՈՆՈԳԵՆ ԱՆԱԼԻՏԻԿ ՖՈՒՆԿ8ԻԱՆԵՐ

'U d h n h n ı d

Դիցուկ ի-ը և է-ն հիպերկոմպլեքս ֆունկցիաներ են x₁,···,x_s (s > 2) իրական փոփոխականներից, որոնց արժեքները ընկած են ինչ որ միավորված ղուդորդա-տեղափոխական գծալին հանրահաչվում, իրական Թվերի դաջատւմ։

Ապասյուցվում է, որ ենե ք-ի և t-ի կոմպոնենտները անալիտիկ ֆունկցիաներ են մի տիրուլնում, որտեղ ք-ը t-ի նկատմամբ մոնոգեն է Ֆեոդոբավի իմաստով, ապա նշված տիրուլնի թուրաջանչլուր կետի մի ինչ որ շրջակալքում ք-ը միարժեք անալիտիկ ֆունկցիա է t-ից։

K. D. ZATULOVSKAYA

J-MONOGENIC ANALYTIC FUNCTIONS

Summary

Let f and t be hypercomplex functions of several real variables $x_1 \cdots x_s$ (s > 2) with their values in an associative-commutative linear algebra over the real number field with an identity element.

Here we prove that if the components of f and t are analytic functions in a domain where f is monogenic with respect to t in the sense of Feodorov then f is a single-valued analytic function in a neighbourhood of each point of that domain.

ЛИТЕРАТУРА

- 1. В. С. Федоров. Моногенность, Мат. сб., 18/60, 1946, 353-378.
- 2. В. С. Федоров. Основные свойства обобщения моногенных функций, Изв. высш. учебн. зав., Математика, 1958, № 6 (7), 257—265.
- 3. К. Д. Затуловская. Об уравнениях в полных дифференциалах и моногенных функциях в смысле В. С. Федорова, Bull. math. soc. Roum. Sci, 4 (52), № 2, 1960, 109—119.