г. ц. тумаркин

ОПИСАНИЕ КЛАССА ФУНКЦИЙ, ДОПУСКАЮЩИХ ПРИБЛИЖЕНИЕ ДРОБЯМИ С ФИКСИРОВАННЫМИ ПОЛЮСАМИ

Пусть задана таблица $\{a_{kl}\}$ комплексных чисел

$$a_{11}, \dots, a_{1N_1}$$

$$\vdots \qquad \vdots \qquad N_k \leqslant \infty, \quad k = 1, 2, \dots,$$

$$a_{k1}, \dots, a_{kN_k}$$
(1)

подчиненных лишь единственному условию: $|\alpha_{kl}| \neq 1$.

В ряде работ Уолша, а также других математиков, рассматривалась задача о нахождении необходимых и достаточных условий, которым должна удовлетворять заданная на |z|=1 функция $F(e^{i\theta})$, чтобы ее можно было с любой точностью приблизить в метрике соответствующего пространства последовательностью рациональных дробей $\{R_k(z)\}$, имеющих своими полюсами лишь точки таблицы (1). Последнее означает, что полюсами k-ой дроби $R_k(z)$ могут быть только числа из k-ой строки таблицы (1). Так что, если в k-ой строке нет повторяющихся чисел a_k и все $a_k \neq \infty$, то $R_k(z)$ можно предста-

вить в виде $R_{k}\left(z\right)=c_{k0}+\sum_{j}\frac{c_{kj}}{z-a_{kj}}$, где c_{kj} -комплексные числа, из

которых лишь конечное число отлично от нуля (при $N_k=\infty$). Некоторые числа a_k в k-ой строке могут встречаться более одного раза, что означает допущение у $R_k(z)$ в точке a_{kl} полюса соответствующего порядка. Кроме того не исключается случай, когда $a_{kl}=\infty$.

Обозначим те из чисел α_{kj} , для которых $|\alpha_{kj}| < 1$, через α_{kj}^+ , а для которых $|\alpha_{kj}| > 1$ —через α_{kj}^- . Положим

$$S_k^+ = \sum_{i} (1 - |\alpha_{kj}^+|), \quad S_k^- = \sum_{i} \left(1 - \frac{1}{|\alpha_{kj}^-|}\right),$$
 (2)

где суммирование распространяется на все числа a_{kj}^+ и a_{kj}^- , соответственно, из k-ой строки таблицы (1).

Хорошо известно [1], что если для таблицы (1)

$$\lim S_k^+ = \infty, \qquad \lim S_k^- = \infty, \tag{3}$$

то для любой функции $F(e^{i\theta}) \in C$ (или L^p , p > 1) найдется последовательность рациональных дробей $\{R_k(z)\}$ с полюсами, заданными таб-

лицей (1), для которой $\|F(e^{i\theta})-R_k(e^{i\theta})\|\to 0$ при $k\to\infty$. С другой стороны, если для всех чисел таблицы (1) $|z_{kj}|>1$, т. е. $S_k=0$, $k=1,2,\cdots$, причем $\lim_{k\to\infty}S_k^-=\infty$, то последовательностями $\{R_k(z)\}$ можно в метрике C приблизить те и только те функции $F(e^{i\theta})$, которые являются граничными значениями непрерывных в $|z|\leqslant 1$ и аналитических в $|z|\leqslant 1$ функций (см., напр., [10], [1]).

В заметке [5] мы указали необходимые и достаточные условия для функций $F(e^{ib})$, которые приближаются рациональными дробями в следующем случае:

$$\lim_{k \to \infty} S_k^+ < \infty, \qquad \lim_{k \to \infty} S_k^- = \infty. \tag{4}$$

Функции $F(e^{i\theta})$ обязаны тогда совпадать почти всюду на |z|=1 с угловыми граничными значениями некоторого подкласса мероморфных функций ограниченного вида, имеющих специальное представление. В дальнейшем, используя полученные нами результаты о последовательностях произведений Бляшке [5], мы установили необходимые и достаточные условия для функций $F(e^{i\theta})$ (в случае (4)) в терминах, непосредственно связанных с расположением чисел в таблице (1). Соответствующие результаты были получены также для пространств

$$L_{\sigma}^{p}$$
 с $\int_{0}^{2\pi} ln \, \sigma' \left(\theta\right) d\theta > -\infty$ при любом $p > 0$ (см. [6]).

Далее, изучается случай, когда

$$\underline{\lim} S_k^+ < \infty, \qquad \underline{\lim} S_k^- < \infty. \tag{5}$$

(Случай $\lim S_k^+ = \infty$, $\underline{\lim} S_k^- < \infty$ аналогичен случаю (4), поэтому мы на нем здесь не останавливаемся.)

В теореме 1 мы устанавливаем необходимые и достаточные условия для функций $F(e^{i\theta})$, допускающих аппроксимацию в метрике L^p , p>1, при выполнении условия (5). Функции $F(e^{i\theta})$, которые при указанных условиях могут быть аппроксимированы дробями, обязаны являться угловыми граничными значениями мероморфных в |z| < 1 и |z| > 1 функций, составляющих подклассы функций с ограниченной неванлинновской характеристикой, которые полностью описываются.

Примененный при доказательстве теоремы 1 метод позволяет доказать необходимость аналогичных условий и для аппроксимации в более общих пространствах L^p_a (теоремы 2 и 3).

Для формулировки результатов нам понадобятся две функции. $B^+(z)$ и $B^-(z)$, аналитические, соответственно, внутри и вне |z|=1. Обозначим через $b_z^+(z)$ произведение Бляшке, нулями которого служат все числа z_z^+ из k-ой строки таблицы (1):

$$b_{k}^{+}(z) = \prod_{j} \frac{\alpha_{kj}^{+} - z}{1 - z \overline{\alpha}_{kj}^{+}} \frac{|\alpha_{kj}^{+}|}{\alpha_{kj}^{+}}$$
 (6)

(если окажется, что для чисел x_{ij}^+ из k-ой строки $\sum_j (1-|x_{ij}^+|)=\infty$, то полагаем $b_i^+(z)\equiv 0$).

Рассмотрим всевозможные равномерно сходящиеся внутри круга |z| < 1 подпоследовательности $\{b_k^+(z)\}$ последовательности $\{b_k^+(z)\}$.

Предельные для таких подпоследовательностей функции $b^+(z)$ аналитичны в |z| < 1 и ограничены здесь по модулю единицей; среди них заведомо имеются функции, не равные тождественно нулю. В самом деле, если взять $\{b_{k_l}^+(z)\}$, для которой $\overline{\lim}_{k_l \to \infty} \sum_j (1-|a_{k_lj}^+|) < \infty$, то $\lim b_{k_l}^+(z) \equiv 0$ (см. напр. [8]).

Обозначим теперь через $B^+(z)$ наилучшую аналитическую мажоранту семейства $\{b^+(z)\}$ всевозможных предельных функций для подпоследовательностей $\{b_{k_l}^+(z)\}$. Это означает, что, во-первых, $B^+(z)$ мажорирует по модулю в |z| < 1 все предельные функции $b^+(z)$:

$$|b^{+}(z)| \leq |B^{+}(z)|, |z| < 1, \text{ Aam Book } b^{+}(z),$$
 (7)

и, во-вторых, что $B^+(z)$ имеет наименьший модуль по сравнению со всякой другой аналитической мажорантой $\widetilde{B}(z)$ семейства $\{b^+(z)\}$. (По поводу существования и свойств аналитической мажоранты см. нашу работу [9]). В силу свойств функций $b^+(z)$, очевидно, следует:

$$B^{+}(z) \not\equiv 0, |B^{+}(z)| \leqslant 1$$
 при $|z| < 1.$ (8)

Нетрудно, пользуясь сделанными выше замечаниями, доказать следующее равенство, непосредственно определяющее $B^+(z)$ через числа $\{a_{kj}\}$ таблицы (1):

$$\ln|B^{+}(z)| = \overline{\lim}_{k \to \infty} \ln|b_{k}^{+}(z)| = \overline{\lim}_{k \to \infty} \sum_{j} \ln\left|\frac{z - a_{kj}^{+}}{1 - z a_{kj}^{+}}\right|$$
 (9)

Функция $B^-(z)$ вводится аналогично: по числам $\{a_k^-\}$ при помощи построения последовательности $\{b_k^-(z)\}$ — произведений Бляшке для |z|>1 с нулями в точках a_k^- из k-ой строки таблицы (1). Условие (5) позволяет заключить, что $B^-(z)$, будучи наилучшей аналитической мажорантой семейства предельных функций для подпоследовательностей $\{b_k^-(z)\}$, обязана быть апалитической и ограниченной в |z|>1 по модулю единицей функцией $\not\equiv 0$. Функция $B^-(z)$ определяется по числам таблицы (1) равенством:

$$\ln |B^{-}(z)| = \overline{\lim} \ln |b_{k}^{-}(z)| = \overline{\lim} \sum_{k \to \infty} \ln \left| \frac{z - a_{kj}^{-}}{1 - z \overline{a_{kj}^{-}}} \right|$$
(10)

Теорема 1. Чтобы функция $F(e^{i\theta}) \in L^p$, p > 1, допускала аппроксимацию на |z| = 1 в метрике L^p последовательностями рацио-

нальных дробей $\{R_k(z)\}$ с заданными таблицей (1) полюсами $\{a_k\}$, удовлетворяющими условию (5), необходимо и достаточно, чтобы $F(e^{(b)})$ являлась одновременно угловыми граничными значениями мероморфных, соответственно, внутри и вне |z|=1, функций $F^+(z)$ и $F^-(z)$, имеющих в соответствующих областях ограниченные характеристики и таких, что их произведения $F^+(z)B^+(z)$ и $F^-(z)B^-(z)$ на ранее определенные нами функции $B^+(z)$ и $B^-(z)$ обяваны входить в классы H_p , соответственно, в |z| < 1 и |z| > 1.

Замечание. Условия совпадения почти всюду на |z|=1 функций $F(e^{i\theta})\,B^+\,(e^{i\theta})\,u\,F\,(e^{i\theta})\,B^-\,(e^{i\theta})$ с угловыми граничными значениями аналитических в |z|<1 и |z|>1 функций из классов H_ρ могут быть. в силу известных результатов о функциях классов H_ρ , выражены следующим образом:

$$\int_{0}^{2\pi} F(e^{i\theta}) B^{+}(e^{i\theta}) e^{in\theta} d\theta = 0, \qquad n = 0, 1, 2, \cdots,$$
 (11)

$$\int_{0}^{2\pi} F(e^{i\theta}) B^{-}(e^{i\theta}) e^{-in\theta} d\theta = 0, \quad n = 0, 1, 2, \cdots$$
 (12)

В самом деле, эти условия равносильны совпадению рассматриваемых функций с граничными эначениями функций из H_1 . Но, как известно, из вхождения в класс H_1 и суммируемости граничных эначений в степени p>1 вытекает принадлежность соответствующих функций классам H_p .

Для доказательства нам понадобится одна лемма функционального анализа, являющаяся некоторым обобщением хорошо известного необходимого и достаточного условия для возможности приближения в банаховом пространстве X влемента x_0 последовательностью влементов $\{x_k\}$, принадлежащих заданному линейному многообразию (см., напр., [3]). В рассматриваемом нами случае последовательность $\{x_k\}$, аппроксимирующая влемент x_0 , набирается не из одного и того же линейного многообразия, а из заранее заданной последовательности $\{X_k\}$ линейных многообразий, натянутых на простейшие рациональные дроби с полюсами в числах k-ой строки таблицы (1).

 Λ емма. Для того чтобы элемент x_0 из сепарабельного банахова пространства X мог быть аппроксимирован последовательностью $\{x_k\}$ элементов, принадлежащих заданной последовательности линейных многообравий $\{X_k\}$, $X_k \subset X$:

$$\lim_{k \to \infty} ||x_0 - x_k|| = 0$$
, where $x_k \in X_k$, $k = 1, 2, \cdots$,

необходимо и достаточно, чтобы у всякой последовательности линейных функционалов $\{y_k(x)\}$, нормы которых равномерно ограничены: $\|y_k\| \leqslant C, \ k=1,\ 2,\cdots,\ u$ для которых

$$y_k(x) = 0, \quad x \in X_k, \quad k = 1, 2, \cdots,$$
 (13)

предельный функционал y(x) для произвольной слабо сходящейся подпоследовательности $\{y_{k_l}(x)\}\ (y(x)=\lim y_{k_l}(x)$ при любом $x\in X$)

должен обращаться в нуль на элементе хо.

Необходимость проверяется немедленно переходом к пределу при $k_l \to \infty$ в очевидном неравенстве:

$$|y_{k_l}(x_0)| = |y_{k_l}(x_0 - x_{k_l})| \le ||y_{k_l}|| \cdot ||x_0 - x_{k_l}||.$$

Доказательство достаточности можно легко провести методом от противного, используя хорошо известный факт существования функционалов $y_k^*(x)$ со свойствами $y_k^*(x_0)=1$, $y_k^*(x)=0$ при $x\in X_k$ и $\|y_k\|=\frac{1}{\rho_k}$, где $\rho_k=\inf_{x\in X_k}\|x_0-x\|$.

Переходим теперь к доказательству теоремы. Начинаем с доказательства необходимости. Чтобы воспользоваться леммой, возьмем специальным образом построенные последовательности линейных функционалов $\{y_k(x)\}$, обращающихся в нуль на линейных многообразиях X_k , натянутых в нашем случае на влементы $\left\{1,\frac{1}{e^{-1}-a_{k1}},\cdots\right\}$. Камдому из функционалов $y_k(x)$ пространства L^p будет соответствовать функция $g_k(\theta) \in L^q$, $\frac{1}{p} + \frac{1}{q} = 1$. При этом

$$y_{k}(x) = \int_{0}^{2\pi} x(\theta) g_{k}(\theta) d\theta, \qquad ||y_{k}|| = \sqrt[q]{\int_{0}^{2\pi} |g_{k}(\theta)|^{q} d\theta}.$$
 (14)

Покажем, что в качестве $\{g_k(\theta)\}$, порождающих последовательность линейных функционалов с требуемыми в лемме свойствами, можно брать $\{e^{i\theta}b_k^+(e^{i\theta})\}$. Здесь $b_k^+(e^{i\theta})$ —граничные значения произведения Бляшке $b_k^+(z)$, нулями которого служат все числа a_{kl}^+ из k-ой строки таблицы (1). Как и для всякого произведения Бляшке $|b_k^+(e^{i\theta})|=1$ почти всюду на |z|=1. Поэтому остается лишь убедиться, что каждый из функционалов

$$y_{k}^{+}(x) = \int_{0}^{2\pi} x(\theta) e^{i\theta} b_{k}^{+}(e^{i\theta}) d\theta$$
 (15)

обращается в нуль на всех простейших дробях $\left\{1, \frac{1}{e^{i\theta} - \alpha_{k1}}, \cdots \right\}$, порождающих линейное многообразие X_k . Убедимся теперь, что

$$y_k^+\left(\frac{1}{e^{i\theta}-\alpha_{kj}}\right) = \int_0^{2\pi} e^{i\theta} \frac{b_k^+\left(e^{i\theta}\right)}{e^{i\theta}-\alpha_{kj}} d\theta = 0.$$
 (16)

В самом деле, функция $\frac{b_k^+(e^{i\theta})}{e^{i\theta}-a_{kj}}$ является граничными значениями функции $\frac{b_k^+(z)}{z-a_{kj}}$, которая аналитична в |z|<1. Аналитичность этой функции внутри |z|<1 в случае, когда $|a_{kj}|>1$, очевидна; в случае же, когда $|a_{kj}|<1$, достаточно заметить, что $b_k^+(z)$ будет обращаться в нуль в a_{kj} .

Теперь достаточно учесть, что если f(z) аналитична и ограничена в |z| < 1, то $\int\limits_0^{2\pi} e^{im\theta} f(e^{i\theta}) \, d\theta = 0$ при всех $m=1,\ 2,\cdots$. Тем са-

мым установлены равенства (16).

Приведенные рассуждения очевидным образом распространяются на случай кратных полюсов, соответствующих повторяющимся в строках таблицы (1) числам a_{kl}

Выберем теперь из $\{y_k^+(x)\}$ какую-либо слабо сходящуюся подпоследовательность $\{y_{k_l}^+(x)\}$. Соответствующая этим функционалам последовательность $\{b_{k_l}^+(z)\}$ произведений Бляшке, граничные значения которых $b_{k_l}^+(e^{l\theta})$ фигурируют в определении $y_{k_l}^+(x)$, будет равномерно сходиться внутри |z| < 1. Действительно, в силу слабой сходимости, существует $\lim y_{k_l}(x)$ при любой $x(\theta) \in D$. Взяв в качестве $x(\theta)$ функции $x(\theta) = \frac{1}{e^{i\theta}-z}$ с фиксированным z, |z| < 1, убедимся, что будет существовать

 $\lim_{k_l \to \infty} \int_0^{2\pi} \frac{b_{k_l}^+(e^{i\theta}) d(e^{i\theta})}{e^{i\theta} - z}, \quad |z| < 1.$

Обозначим предельную функцию для подпоследовательности $\{b_{k_l}^+(z)\}$ через $b^+(z)$. Изложенные только что соображения показывают, что в представлении функционала $y^+(z)$, к которому слабо сходилась последовательность $\{y_{k_l}^+(z)\}$, будет участвовать функция $b^+(e^{ib})$ — граничные значения $b^+(z) = \lim b_{k_l}^+(z)$, |z| < 1, (см. также [4] стр.171) т. е.

$$y^{+}(x) = \int_{0}^{2\pi} x(\theta) e^{i\theta} b^{+}(e^{i\theta}) d\theta.$$
 (17)

Пусть теперь $F(e^{i\theta})$ —какая-либо функция, допускающая аппроксимацию дробями в метрике L^p , p>1, с заданными таблицей (1) полюсами. Применяя тогда лемму, заключаем, что

$$y^{+}(F) = \int_{0}^{2\pi} F(e^{ib}) e^{ib} b^{+}(e^{ib}) d^{b} = 0.$$

Заметим теперь, что мы могли бы с самого начала брать в качестве последовательности функционалов, удовлетворяющих условиям леммы, последовательность $\{y_{k,m}^-(x)\}$ вида:

$$y_{k,m}^{+}(x) = \int_{0}^{2\pi} x(\theta) e^{im\theta} b_{k}^{+}(e^{i\theta}) d\theta.$$
 (18)

Здесь m-фиксированное целое число $\gg 1$. Из слабой сходимости последовательности функционалов $\{y_{k_l}^+(x)\}$ вида (15) к функционалу $y^+(x)$, определяемому формулой (17), немедленно вытекает слабая сходимость $\{y_{k_l}^-(x)\}$. Причем предельным функционалом будет, очевидно, функционал

$$y_{[m]}^{+}(x) = \int_{0}^{2\pi} x(\theta) e^{im\theta} b^{+}(e^{i\theta}) d\theta.$$

Но, по лемме, предельный функционал должен обращаться в нуль на элементе $F(e^{i\theta})$, допускающем аппроксимацию последовательностями элементов из заданных линейных многообразий. Откуда следует, что

$$y_{[m]}^{-}(F) = \int_{0}^{2\pi} F(e^{i\theta}) e^{im\theta} b^{+}(e^{i\theta}) d\theta = 0, \quad m \geqslant 1.$$
 (19)

Функция $F(e^{i\theta})b^+(e^{i\theta})$ входит, очевидно, в класс L^p , p>1, ибо $|b^+(e^{i\theta})| \le 1$ почти всюду на |z|=1, а по условию, $F(e^{i\theta}) \in L^p$. Из обращения в нуль моментов (19) вытекает, как известно (см., напр., [4]), что $F(e^{i\theta})b^+(e^{i\theta})$ —граничные значения функции класса H_1 . Суммируемость этой функции в степени p>1 дает теперь возможность заключить, что $F(e^{i\theta})b^+(e^{i\theta})$ является на самом деле угловыми граничными значениями функции класса H_p (см. там же).

Перед тем как формулировалась теорема, отмечалось существование равномерно сходящихся подпоследовательностей произведений Бляшке $\{b_{k_l}^+(z)\}$, предельные функции $b^+(z)$ которых $\not\equiv 0$ в |z| < 1. Очевидно, можно было с самого начала считать, что взятым слабо сходящимся подпоследовательностям функционалов $\{y_{k_l}^+(x)\}$ соответствуют произведения Бляшке $\{b_{k_l}^+(z)\}$, для которых $\lim b_{k_l}^+(z) = b^+(z) \not\equiv 0$. Учитывая теперь, что функцию

$$F(e^{i\theta}) = \frac{F(e^{i\theta}) b^+(e^{i\theta})}{b^+(e^{i\theta})}$$

можно рассматривать как частное угловых граничных значений функции класса H_p и ограниченной в |z| < 1 аналитической функции $b^+(z) \not\equiv 0$, заключаем о совпадении функции $F(e^0)$ почти всюду на |z| = 1 с угловыми граничными значениями мероморфной в |z| < 1 функции $F^+(z)$ с ограниченной характеристикой.

Остается проверить, что из вхождения функции $F(e^{ib})b^+(e^{ib})$ в класс H_p вытекает принадлежность классу H_p и произведения $F(e^{ib})B^+(e^{ib})$, где $B^+(e^{ib})$ —угловые граничные значения функции $B^+(z)$ —наилучшей аналитической мажоранты семейства всех предель-

ных функций $\{b^{\pm}(z)\}.$

Суммируемость на |z|=1 функций $|F(e^{i\theta})|^p$ (по условию) и $\ln |F(e^{i\theta})|$ (вытекающая из того, что $F(e^{i\theta})$, по доказанному, является угловыми граничными значениями мероморфной функции ограниченного вида) дает возможность построить функцию

$$D(z) = \exp \frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \ln |F(e^{i\theta})| d^{i\theta}$$
 (20)

Функция D(z) будет по теореме Сеге входить в класс H_ρ (см.,

напр., [4]).

Из выполнения неравенства $|F(e^{i\theta})|b^+(e^{i\theta})| \ll |F(e^{i\theta})|$ почти всюду на |z|=1 вытекает, в силу хорошо известного свойства класса H_p , что аналитические в $|z| \ll 1$ функции $F^+(z)b^+(z)$ класса H_p с угловыми граничными значениями $F(e^{i\theta})b^+(e^{i\theta})$ не превосходят по модулю функции "максимального модуля" D(z):

$$|F^{+}(z)b^{+}(z)| \leq |D(z)|, |z| \leq 1.$$
 (21)

Это означает, что D(z) является аналитической мажорантой семейства функций $\{F^+(z)\,b^+(z)\}$, получающихся умножением $F^+(z)$ на всевозможные предельные функции $b^+(z)$ равномерно сходящихся подпоследовательностей, выбранных из $\{b_k^+(z)\}$. Но тогда, учитывая (21), получаем, что произведение $F^+(z)\,B^+(z)$, которое, очевидно, будет наилучшей аналитической мажорантой семейства $\{F^+(z)\,b^+(z)\}$, удовлетворяет неравенству:

$$|F^{+}(z)B^{+}(z)| \leq |D(z)|, |z| < 1.$$

Отсюда, используя включение $D(z) \in H_p$, следует принадлежность $F^+(z) B^+(z)$ классу H_p . Это в сущности завершает доказательство необходимости. Действительно, проверка вхождения $F^-(z) B^-(z)$ в класс H_p в |z|>1 проводится применением леммы к последовательности $\{y_k^-(x)\}$, построенной с помощью $\{b_k^-(z)\}$ совершенно аналогично.

 \mathcal{A} оказательство достаточности. В силу леммы, нам достаточно показать, что на функции $F(e^{i\theta})_x$ удовлетворяющей условию теоремы, будет обращаться в нуль всякий функционал y(x):

$$y(x) = \int_{0}^{2\pi} x(\theta) g(\theta) d\theta, \quad \text{rge} \quad g(\theta) \in L^{q}, \quad \frac{1}{p} + \frac{1}{q} = 1. \tag{22}$$

Этот функционал является пределом слабо сходящейся последовательности функционалов $\{y_{k_l}(x)\}$, обращающихся в нуль на функциях системы

$$\left\{1, \frac{1}{e^{i0}-a_{k_{l}j}}\right\}, \quad j=1,\cdots,N_{k_{l}}, \quad l=1, 2,\cdots.$$
 (23)

Используя хорошо известную форму линейных функционалов в U:

$$y_k(x) = \int_0^\infty x(\theta) g_k(\theta) d\theta, \qquad g_k(\theta) \in L^q, \tag{24}$$

запишем условия обращения в нуль наших функционалов на функциях системы (23)

$$\int_{0}^{2\pi} g_{k}(\theta) d\theta = 0, \qquad \int_{0}^{2\pi} \frac{g_{k}(\theta)}{e^{i\theta} - \alpha_{kj}} d\theta = 0, \quad j = 1, \dots, N_{k},$$

$$k = 1, 2, \dots. \tag{25}$$

Введем теперь интегралы типа Коши-Лебега

$$\Phi_{k}(z) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{g_{k}(\theta) d\theta}{e^{i\theta} - z}, \qquad \Phi(z) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{g(\theta) d\theta}{e^{i\theta} - z}. \qquad (26)$$

Условия (25) обращения в нуль функционалов на функциях системы (23) означают наличие нулей в соответствующих точках у интеграловтипа Коши. Будем в дальнейшем использовать для определяемых интегралами типа Коши (26) аналитических внутри и вне |z|=1 функций дополнительные индексы + и -. Тогда из (25) имеем:

$$\Phi_k^+(a_{kj}^+)=0, \quad \Phi_k^-(a_{kj}^-)=0, \quad j=1,\cdots,N_k, \quad k=1,2,\cdots.$$
 (27)

Нормы $\{\|y_{k_l}\|\}$ слабо сходящейся последовательности $\{y_{k_l}(x)\}$ линейных функционалов равномерно ограничены. Поэтому

$$\int_{0}^{2\pi} |g_{k_{l}}(\theta)|^{q} d\theta \leqslant C, \qquad l = 1, 2, \cdots.$$
 (28)

Применим теперь к последовательности $\{e^{-i\theta}\,g_{k_\ell}(\theta)\}$ теорему Рисса,. утверждающую, что если функция $f=\sum^{+\infty}c_ne^{in\theta}\in L^p$, p>1, то ряд.

 $\sum_{n=0}^{\infty} c_n e^{in\theta}$ является рядом Фурье функции $f^+ \in L^p$ и $||f^+||_p \leqslant K_p ||f||_p$, где K_p —постоянная, зависящая только от p, но не зависящая от f (см., напр., [2], стр. 125). Опираясь на (28), получаем тогда, что $\{\Phi_{k_1}^+(z)\}$ и $\{\Phi_{k_2}^-(z)\}$ являются последовательностями функций, аналитических, соответственно, в |z| < 1 и |z| > 1 с равномерно ограниченными H_q нормами:

$$\|\Phi_{k_{l}}^{+}(e^{i\theta})\|_{q} \leqslant C_{1}, \qquad \|\Phi_{k_{l}}^{-}(e^{i\theta})\|_{q} \leqslant C_{2}$$

$$(l = 1, 2, \cdots).$$
(29)

Подобные оценки имеют место и для аналитических функций $\Phi^+(z)$ и $\Phi^-(z)$, соответствующих предельному функционалу. Из слабой сходимости последовательности $\{y_{k_l}(x)\}$ к y(x) следует равномерная сходимость внутри |z| < 1 последовательности $\{\Phi_{k_l}^+(z)\}$ к $\Phi^+(z)$ и равномерзая сходимость внутри |z| > 1 последовательности $\{\Phi_{k_l}^-(z)\}$ к $\Phi^-(z)$. Используя хорошо известное свойство интеграла типа Коши-Лебега

$$\frac{1}{2\pi}\int_{0}^{2\pi}\frac{e^{i\theta}\left[e^{-i\theta}g\left(\theta\right)\right]}{e^{i\theta}-z}\,d\theta=\begin{cases} \Phi^{+}\left(z\right), & |z|<1,\\ \Phi^{-}\left(z\right), & |z|>1, \end{cases}$$

!получаем, что

$$e^{-l\theta}g(\theta)=\Phi^+\left(e^{l\theta}
ight)-\Phi^-\left(e^{l\theta}
ight)$$
 почти всюду на $|z|=1.$

Теперь интересующее нас значение функционала $y\left(F\right)$ можно выразить следующим образом:

$$y(F) = \int_{0}^{2\pi} F(e^{i\theta}) g(\theta) d\theta = \int_{0}^{2\pi} e^{i\theta} F(e^{i\theta}) \Phi^{+}(e^{i\theta}) d\theta - \int_{0}^{2\pi} e^{i\theta} F(e^{i\theta}) \Phi^{-}(e^{i\theta}) d\theta.$$
(30)

Мы докажем, что каждый из интегралов в правой части (30) обращается в нуль, что, в силу леммы, достаточно для завершения до-

-казательства теоремы. Вначале рассмотрим $\int\limits_0^{2\pi}e^{i\theta}F\left(e^{i\theta}\right)\Phi^{-}\left(e^{i\theta}\right)d\theta$. Нам

понадобится дополнительная информация о свойствах $F\left(e^{i\theta}\right)\Phi^+\left(e^{i\theta}\right)$. Ранее уже отмечалось, что $\Phi^+\left(e^{i\theta}\right)$ является угловыми граничными значениями функции $\Phi^+\left(z\right)\in H_q$. В дополнение к этому установим возможность представления функции $\Phi^+\left(z\right)$ в виде

$$\Phi^+(z) = b^+(z) \, \varphi^+(z), \quad |b^+(z)| \leqslant 1$$
 при $|z| \leqslant 1, \, \varphi^+(z) \in H_q$. (31)
Здесь $b^+(z) = \lim_{k_m \to \infty} b^+_{k_m}(z)$ — предельная функция какой-либо равно-

мерно сходящейся подпоследовательности, выбранной из $\{b_{k_l}^+(z)\}$. Для атого воспользуемся следующим представлением функций $\Phi_{k_l}^+(z)$, входящих, как уже отмечалось, в класс H_q . $\Phi_{k_l}^+(z) = b_{k_l}^+(z) \, |\, b_{k_l}^+(z) \, |\, \leqslant 1$ при |z| < 1, $\|\varphi_{k_l}^+\|_{H_q} \leqslant C_1$. (32) В втом представлении $b_{k_l}^+(z)$ —произведения Бляшке с нулями в точках- $\{z_{k_lj}^+\}$, являющимися, в силу (27), нулями функций $\Phi_{k_l}^+(z)$. Из равномерной ограниченности норм в пространстве H_q функций $\{\Phi_{k_l}^+(z)\}$ (см. (29)) и свойств произведений Бляшке иметь почти всюду на |z|=1 модуль граничных значений равный единице: $|b_{k_l}^+(e^{i\theta})|=1$ следует принадлежность функций $\{\varphi_{k_l}^+(z)\}$ классу H_q и отмеченная в (32) равномерная оценка для норм в H_q этих функций. Перейдем теперь к рассмотрению подпоследовательности $\{\Phi_{k_m}^+(z)\}$, для которой равномерно бы сходились внутри |z| < 1 последовательности $\{b_{k_m}^+(z)\}$ и $\{\varphi_{k_m}^+(z)\}$, образованные, соответственно, из первых и вторых множителей в представлении (32). Обозначим:

$$b^{+}(z) = \lim b_{k_{m}}^{+}(z), \quad \varphi^{+}(z) = \lim \varphi_{k_{m}}^{+}(z).$$
 (33)

Переходя к пределу при $k_m \to \infty$ при фиксированном |z| = r < 1, получаем, опираясь на (32), равенство (31). В самом деле, по хорошо известному свойству функций класса H_q имеем:

$$\|\varphi_{k_m}^+(re^{i\theta})\|_q \leqslant \|\varphi_{k_m}^+(e^{i\theta})\|_q \leqslant C_1, \quad 0 < r < 1.$$

Откуда, устремляя $k_m \to \infty$, имеем:

$$||\varphi^{+}(re^{i\theta})||_{q} \leqslant C_{1}, \quad 0 < r < 1.$$

что и доказывает включение $\varphi^+(z) \in H_q$. Теперь мы можем установить обращение в нуль первого интеграла в правой части (30). Чтобы убедиться в отмеченном свойстве, представим, опираясь на (31), стоящую под первым интегралом функцию следующим образом:

$$F(e^{i\theta}) \Phi^{+}(e^{i\theta}) = [F(e^{i\theta}) B^{+}(e^{i\theta})] \varphi^{+}(e^{i\theta}) \left[\frac{b^{+}(e^{i\theta})}{B^{+}(e^{i\theta})} \right]$$
(34)

Равенство

$$\int\limits_0^{2\pi}e^{i\theta}F\left(e^{i\theta}\right)\Phi^+\left(e^{i\theta}\right)d\theta=0$$

будет немедленным следствием совпадения функции $F(e^{i\theta}) \Phi^+(e^{i\theta})$ с угловыми граничными значениями функции кл исса H_1 .

По условию теоремы, первый из множителей в правой части (34) $F(e^{i\theta})$ $B^+(e^{i\theta})$ является граничными значениями функции класса H_p . Функция $\frac{b^+(e^{i\theta})}{B^+(e^{i\theta})}$ является угловыми граничными значениями функции $\frac{b^+(z)}{B^+(z)}$, которая аналитична и ограничена в |z| < 1. Наконец, $\varphi^+(e^{i\theta})$ угловые граничные значения функции $\varphi^+(z) \in H_q$ (см. (31)). Учитывая, что произведение двух аналитических функций $f(z) \in H_p$ и $\varphi(z) \in H_q$ в случае, когда $\frac{1}{p} + \frac{1}{q} = 1$ принадлежит классу H_i , а умножение на ограничениую аналитическую функцию не выводит из этого класса, заключаем о совпадении почти всюду на |z| = 1 функции (34) с угловыми граничными значениями аналитической в |z| < 1 функции класса H_i . Теперь достаточно воспользоваться хорошо известным свойством класса H_i :

$$\int_{0}^{2\pi} e^{ln\theta} f(e^{l\theta}) d\theta = 0, \quad n = 1, 2, \dots, \quad f \in H_{1}.$$

Применяя этот факт при n=1 к функции $F(e^{i t}) \Phi^+(e^{i t}) \in H_1$, получаем:

$$\int_{0}^{2\pi} e^{i\theta} F(e^{i\theta}) \Phi^{\pm}(e^{i\theta}) d\theta = 0. \tag{35}$$

Равенство нулю второго интеграла в правой части (30) проверяется аналогично. Но в этом случае, кроме доказательства совпадения функции $F(e^{i\theta}) \Phi^-(e^{i\theta})$ с угловыми граничными значениями аналитической в |z| > 1 функции класса H_1 , мы должны еще убедиться, что рассматриваемая функция имеет в $z = \infty$ нуль по крайней мере второго порядка. Если это будет показано, то, используя выражения

коэффициента при $\frac{1}{z}$ в разложении функции $\frac{1}{2\pi} \int_{0}^{2\pi} e^{i\theta} \frac{F(e^{i\theta})\Phi^{-}(e^{i\theta})}{e^{i\theta}-z} d\theta$.

по отрицательным степеням г, будем иметь:

$$\int_{0}^{2\pi} e^{i\theta} F(e^{i\theta}) \Phi^{-}(e^{i\theta}) d\theta = 0.$$
 (36)

Существование в $z=\infty$ нуля по крайней мере второго порядка у рассматриваемой функции вытекает из наличия в $z=\infty$ нуля по крайней мере второго порядка у функции $\phi^-(z)$ и аналогичного (34) представления $F(e^{t\theta}) \Phi^-(e^{t\theta})$ в виде произведения

$$F\left(e^{i\theta}\right)\Phi^{-}\left(e^{i\theta}\right) = \left[F\left(e^{i\theta}\right)B^{-}\left(e^{i\theta}\right)\right] \cdot \left[\frac{b^{-}\left(e^{i\theta}\right)}{B^{-}\left(e^{i\theta}\right)}\right] \varphi^{-}\left(e^{i\theta}\right). \tag{37}$$

В соответствии с представлением (37) мы заключаем, что $F(e^{i\delta})$ $\Phi^-(e^{i\delta})$ можно рассматривать как граничные значения произведения трех аналитических в |z| > 1 функций: $F^-(z) B^-(z)$ (аналитична по условию), $\frac{b^-(z)}{B^-(z)}$ (аналитична согласно определению $B^-(z)$) и $\varphi^-(z)$ (аналитична в силу тех же соображений, что и для $\varphi^+(z)$).

Теперь достаточно проверить, что один из множителей, а именно: $\varphi^-(z)$, имеет в бесконечности нуль по крайней мере второго порядка. Вначале установим подобный факт для функций $\Phi_{k_z}^-(z)$. Функции

$$\Phi_{k_{l}}^{-}(z) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{g_{k_{l}}(\theta) d\theta}{e^{l\theta} - z}, \quad |z| > 1,$$

обращающиеся при $z=\infty$ в нуль, имеют в разложении по отрицательным степеням z при $\frac{1}{z}$ ковффициенты, равные $-\frac{1}{2\pi}\int\limits_0^{2\pi}g_{k_I}(\theta)\,d\theta=0$, в силу условий (25).

Существование нуля по крайней мере второго порядка в $z=\infty$ у функций $\Phi_{k_l}^-(z)$ дает возможность установить аналогичное свойство для функций $\phi_{k_l}^-(z)$. В самом деле, $\Phi_{k_l}^-(z)=b_{k_l}^-(z)\,\phi_{k_l}^-(z)$, причем по определению $b_{k_l}^-(z)$ —произведение Бляшке с нулями в точках $\{a_{k_l}^-\}$. В случае, когда среди чисел $\{a_{k_l}^-\}$ в k_l -ой строке нет равных ∞ , наше утверждение очевидно. Пусть теперь в k_l -ой строке было m чисел, равных ∞ . Тогда, используя обращение в нуль функционалов $y_{k_l}(x)$ на соответствующих влементах z,\cdots,z^m

$$\int_{0}^{2\pi} e^{i\theta} g_{k_I}(\theta) d\theta = 0, \cdots, \int_{0}^{2\pi} e^{im\theta} g_{k_I}(\theta) d\theta = 0,$$

ваключаем о существовании в $z=\infty$ у функции $\Phi_{k_l}^-(z)$ нуля по крайней мере m+2 порядка. Но $b_{k_l}^-(z)$ будет иметь в $z=\infty$ нуль m-го

порядка. Далее, можно воспользоваться тем, что
$$\phi_{k_l}^-(z) = \frac{\Phi_{k_l}^-(z)}{b_{k_l}^-(z)}$$
,

чтобы установить наличие в $z=\infty$ нуля по крайней мере второго порядка у функций $\varphi_{k_l}^-(z)$. Из предельного равенства $\varphi^-(z)=\lim \varphi_{k_l}^-(z)$ вытекает аналогичное свойство функции $\varphi^-(z)$, достаточное для заключения об обращении в нуль интеграла (36). Тем самым установлено, в силу (35) и (30), равенство y(F)=0 и завершено доказательство теоремы.

Примененный при доказательстве теоремы метод поэволяет установить необходимые условия для функций, допускающих приближение рациональными дробями в более общих пространствах, чем рассматривавшиеся в теореме 1.

Tеорема 2. Пусть для функции $F(e^{i\theta})$ найдется последова-

тельность рациональных дробей $\{R_k(z)\}$ такая, что

$$\lim_{k \to \infty} \int_{0}^{2\pi} |F(e^{i\theta}) - R_k(e^{i\theta})|^p d\sigma(\theta) = 0, \tag{38}$$

 ι де \circ (θ) — неубывающая на $[0,2\pi]$ функция с

$$\int_{0}^{2\pi} \ln \sigma'(6) d\theta > -\infty, \tag{39}$$

p>1, а полюса $\{R_k(z)\}$, расположенные внутри |z|<1, принадлежат таблице $\{a_{kl}^+\}$ чисел с условием

$$\lim_{k\to\infty}\sum_{I}\left(1-\left|\alpha_{kI}^{+}\right|\right)<\infty. \tag{40}$$

Тогда функция $F(e^{i\theta})$ совпадает с угловыми граничными значениями мероморфной в |z| < 1 функции $F^+(z)$ с ограниченной характеристикой и такой, что произведение

$$F^{+}(z) B^{+}(z) \Omega^{+}(z) \in H_{p}, |z| < 1.$$

Здесь $B^+(z)$ —функция, определявшаяся при формулировке теоремы 1 (см. (9)); $\Omega^+(z)$ —аналитическая в |z| < 1 функция, заданная формулой

$$\Omega(z) = \exp \frac{1}{2\pi p} \int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \cdot \ln \sigma'(\theta) d\theta. \tag{41}$$

(Из определения следует, что $Q^+(z)$ также (H_p)

 \mathcal{A} оказательство. Из (38), учитывая, что $| \, \mathfrak{Q}^{+} \, (e^{i\theta}) \, | = \sqrt[p]{\sigma' \, (\ell)}$ имеем:

$$0 = \lim_{k \to \infty} \int_{0}^{2\pi} |F(e^{i\theta}) - R_k(e^{i\theta})|^p s'(\theta) d\theta =$$

$$= \lim_{k \to \infty} \int_{0}^{2\pi} |F(e^{i\theta})|^2 + (e^{i\theta}) - R_k(e^{i\theta})|^2 s'(\theta)|^p d\theta.$$

 \mathcal{A} алее, слово в слово повторяем доказательство необходимости в теор еме 1, взяв в качестве последовательности линейных многообразий—

линейные многообразия, натягиваемые на $\left\{\Omega^{+}\left(e^{i\theta}\right), \frac{\Omega^{+}\left(e^{i\theta}\right)}{e^{i\theta}-\pi_{h,i}}\right\}, j=1,\cdots$

..., N. Нетрудно убедиться, что та же самая последовательность функционалов $\{y_k^-(x)\}$ удовлетворяет всем условиям леммы. В резуль-тате применения леммы к функции $F(e^{i\theta}) \Omega^+(e^{i\theta})$ мы покажем, что произведение $F(e^{i\delta}) = (e^{i\delta}) B^+(e^{i\delta})$ является граничным функции класса H_n .

Замечание. Утверждаемый теоремой 2 факт был доказан нами не только при p > 1, но и при всех p > 0 (см. [6]). В этом случае мы не можем уже воспользоваться леммой, так как пространства L_{2}^{p} , 0 ,уже не являются банаховыми. Метод, позволяющий обосновать справедливость теоремы при любом p>0, основан на использовании наших результатов о сходимости последовательностей мероморфных функций.

Соответствующие результаты были установлены нами в связи с получением необходимых и достаточных условий для функций $F(e^{i\theta})$, допускающих аппроксимацию в пространствах L_q^p , p>0, в случае, когда таблица $\{\alpha_{k,l}\}$, задающая расположение полюсов, удовлетворяет условию (4).

Из теоремы 2 немедленно выводится следствие, распространяющее обоснованные теоремой 1, необходимые условия для функций $F'(e^{i\theta})$, допускающих аппроксимации в L^p , p>1, рациональными дробями с полюсами, удовлетворяющими условию (5), на приближение в более общих метриках L_{a}^{p} в которых для $\sigma(\theta)$ выполняется (39).

Теорема 3. Пусть для $\sigma(\theta)$ найдется последовательность. рациональных дробей $\{R_k(z)\}$, удовлетворяющая (38), где для $\mathfrak{I}(\theta)$ выполняется (39). Если при этом таблица (2,), задающая распо-ложение полюсов аппроксимирующих дробей, такова, что

$$\lim_{k\to\infty}\sum_{j}(1-|\alpha_{kj}^+|)<\infty,\ \lim_{k\to\infty}\sum_{j}\left(1-\frac{1}{|\alpha_{kj}^-|}\right)<\infty,$$

то $F(e^{i\theta})$ является одновременно угловыми граничными значениями. функций $F^+(z)$ и $F^-(z)$, мероморфных и имеющих ограниченные характеристики, соответственно, в областях |z| < 1 и |z| > 1, и таких, что произведения

$$F^+(z) \stackrel{\Omega^+}{=} (z) B^+(z) \in H_p \quad \text{B} \quad |z| < 1,$$

 $F^-(z) \stackrel{\Omega^-}{=} (z) B^-(z) \in H_p \quad \text{B} \quad |z| > 1.$

Здесь $B^+(z)$ и $B^-(z)$ —те же самые, что и в теореме 1, а $\Omega^+(z)$ и $\Omega^{-}(z)$ -аналитические, соотеетственно, в |z| < 1 и |z| > 1 функции, определенные формулой (41).

Пока остается открытым вопрос об исчерпывающей характеристике тех, рассматриваемых в теореме 3 пространств, в которых со-- ответствующие условия будут также и достаточными. Последнее сделано в теореме 1 при весьма сильных дополнительных ограничениях: p > 1, $d\sigma(\theta) \equiv d\theta$.

Московский геологоразведочный институт им. С. Орджоникидзе

Поступнае 18. І. 1966

Գ. 8. ՏՈՒՄԱՐԿԻՆ

-ՖԻՔՍՎԱԾ ԲԵՎԵՌՆԵՐ ՈՒՆԵՑՈՂ ԿՈՏՈՐԱԿՆԵՐՈՎ ՄՈՏԱՐԿՎՈՂ ՖՈՒՆԿՑԻԱՆԵՐԻ ԴԱՍԻ ՆԿԱՐԱԳՐՈՒՄԸ

Udhahaid

Ներկա հոդվածում ուսումնասիրվում է |z|=1 շրջանագծի վրա տրված F(z) ֆունկցիաների մոտարկման պրորլեմը $\{R_k(z)\}$ ռացիռնալ ֆունկցիաներով, որոնց բևեռները կարող են գտնվել միալն տված $\{a_{kj}\}$ $k=1,2,\cdots$ \cdots ; $j=1,2,\cdots)$ ազլուսակի կնտերում։ Դիտարկվում է այն դեպքը, երբ $\{a_{kj}\}$ կետերը բավարարում են $\lim_{k\to\infty}\sum\limits_{j}(1-|a_{kj}^+|)<\infty$; $\lim_{k\to\infty}\sum\limits_{j}(1-\frac{1}{|a_{kj}^-|})<\infty$ պալմաններին, որտեղ a_{kj}^+ -ները այն a_{kj} կետերն են, որոնց համար $|a_{kj}|<1$, իսկ a_{kj}^- -ների համար՝ $|a_{kj}^-|>1$:

1 Թեորեմում տրվում են |z|=1 շրջանագծի վրա $L_p\left(p>1\right)$ մետրիկալում ֆունկցիալի ռացիոնալ ֆունկցիաներով մոտարկման անհրաժեշտ և բավարար պալմանները։ 2 և 3 Թեորեմներում մոտարկման անհրաժեշտ պալմանները են ավելի ընդհանուր՝ L_p^a տարածությունների վրա

ալն ենթադրությամբ, որ $s(\theta)$ ֆունկցիան բավարարում է $\int\limits_0^{2\pi} \ln s'(\theta) \, d\theta > -\infty$

G. C. TUMARKIN

THE DESCRIPTION OF THE CLASS OF FUNCTIONS WHICH CAN BE APPROXIMATED BY RATIONAL FUNCTIONS WITH PREASSIGNED POLES

Summary

We study the problem of approximating the functions F(z) on |z|=1 by rational functions $\{R_k(z)\}$, whose poles may lie only at preassigned points $\alpha_{kl}, \dots, \alpha_{kj}, \dots (k=1, 2, \dots)$. In this paper we consider the case when the points $\{\alpha_{kj}\}$ satisfy the conditions

$$\lim_{k \to \infty} \sum_{(j)} (1 - |\alpha_{kj}^+|) < \infty, \quad \lim_{k \to \infty} \sum_{(j)} \left(1 - \frac{1}{|\alpha_{kj}^-|} \right) < \infty \text{ where we mark } \alpha_{kj}$$
 by α_{kj}^+ when $|\alpha_{kj}| < 1$ and by α_{kj}^+ when $|\alpha_{kj}| > 1$.

In theorem I we give necessary and sufficient conditions so that the function F(z) might be approximated on |z|=1 in the sense of L^p , p>1, by rational functions with poles at $\{a_{kj}\}$. In theorems 2 and 3 we extend the necessary conditions to approximation in the sense of

$$L_{z}^{p}$$
 under the condition that $\int_{0}^{2\pi} \ln \sigma'(\theta) d\theta > -\infty$.

ЛИТЕРАТУРА

- 1. Н. И. Ахиезер. Лекции по теории аппроксимации, Москва, Изд. Наука, 1965.
- К. Гофман. Банаховы пространства аналитических функций, Москва, Изд. ин. лит., 1963.
- 3. А. А. Аюстерник, В. И. Соболев. Элементы функционального анализа, Москва, Гостехиздат, 1951.
- 4. И. И. Привилов. Граничные свойства аналитических функций, Москва, Гостехиздат, 1951.
- 5. Г. Ц. Тумаркин. Приближение функций рациональными дробями с заранее заданными полюсами, ДАН СССР, 98, № 6, 1954, 909—912.
- 6. Г. Ц. Тумаркин. Граничные свойства последовательностей аналитических функций, Автореферат диссертации на соискание ученой степени доктора физикоматематических наук, Ленинград, 1961.
- 7. Г. Ц. Тумаркин. Последовательности произведений Бляшке, ДАН СССР, 129, № 1, 1959, 40—43.
- Г. Д. Тумаркин. Сходящиеся последовательности произведений Бляшке, Сибирский математический журнал, 5, № 1, 1964, 201—233.
- 9. Г. Ц. Тумаркин. Условия существования аналитической мажоранты семейства аналитических функций, Известия АН АрмСССР, XVII, № 6, 1964, 3—25.
- 10. Дж. Л. Уолш. Интерполяция рациональными функциями в комплексной области, Москва, Изд. ин. лит., 1961.