А. П. МАГТЕСЯН, М. А. ОГАННИСЯН

НАБЛЮДЕНИЯ ГАЛАКТИК В ГРУППАХ НА 102 МГц

На элетоте 102 МГн метолом мерцаний на неоднородностях межиланетной плазмы проведены наблюдения 325 галактик в группах. В 42 из них обнаружено радиоизлучение, 11 из которых имеют мерцающий компонент.

1. Введение. В работах [1, 2] изучена связь радиои-лучательной способности галактик на частотах 1400—5000 МГц в группах галактик от среднего гармонического линейного расстояния между галактиками, характеризующего илотность групи, и от относительного ко-

личества эллинтических и линзовидных галактик в них.

Интересно было выяснить, сохраняются ли полученные в [1, 2] результаты при переходе к низким частотам. Кроме того, важно изучить зависимость радиоспектров галактик от плотности и морфологического состава группы в широком диапазоне радиоволи. С этой целью с 1980 по 1983 гг. были проведены наблюдения галактик в группах [3, 4] на частоте 102 МГц методом мерцаний на неоднородностях межиланетной плазмы, что позволяет также изучить зависимость топкой структуры галактик от тех же характеристик групп.

2. Методика наблюдений и обработки. Наблюдения были проведены на большой синфазной антенне (БСА) Физического института АНСССР им. П. Н. Лебедева в г. Пущино [5]. Диаграмма направленности антениы по половинной мощности имеет размер 49′×27′/созг, а се максимальная эффективная площадь составляет 20 000 м². Частота приема менялась от 102 до 103 МГц, что позволило нам выполнить наблюдения радиоисточников в максимуме диаграммы антенны по склонению. Полоса пропускания приемника составляла 1400 кГц, постоянная времени 0.6 с.

Погрешность измерений илотностей потоков оценивалась по фор-

муле:

$$\sigma = [\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + (0.2S)^2]^{\frac{1}{2}},$$

где σ_1 —среднеквадратическая величина шумов, которая в зените равна 0.14 Ян, σ_2 —уровень эффекта путаницы (confusion), которая в зените равна 1.1 Ян, σ_3 —среднеквадратическая ошибка одного измерения (каждый радиоисточник наблюдался не менее 5 раз). S—плотность потока, а коэффициент 0.2 связан с погрешностью определения потоков опорных источников. Их значения на частоте 102 МГц вычислялись с номощью потоков от 38 МГц до 178 МГц [6—9] путем интерноляции.

Погрешность плотности потока мерцающей компоненты, когда наблюдаются только мерцания, в основном определяется шумами аппаратуры и эффектом путаницы мерцающих источников. Эффект путаницы для мерцающих источников на антенне БСА исследован в [10], его медианное значение равно 0.14 Ян. Поэтому погрешность

потока мерцающей компоненты вблизи зенита составляет 0.2 Ян.

Наблюдения обрабатывались на ЭВМ М-600 по программе, описанной в [11]. Результатом обработки явились оценки плотностей потоков S, пидексов мерцаний и временных спектров мерцаний радноисточников.

Путем сопоставления полученного спектра с теоретическими [12]. можно оценить угловой размер в мерцающей компоненты источника. Зная в и используя расчеты [13], можно оценить теоретический индекс мерцаний. Отметим, что на частоте 102 МГц мерцания максимальны при солнечной элонгации $\epsilon \! = \! 24^\circ.$ Отношение измеренного индекса мерцаний к теоретическому позволяет оценить долю энергии R, заключенную в мерцающем компоненте. Отсюда получаем поток

мерцающего компонента $S_M = S \cdot R$.

В тех случаях, когда на аналоговой записи наблюдалась ронная кулевая линия, мы давали верхнюю оценку плотности потока S=1 Ян. В случае же, когда источник находился в сложной области или оыл настолько слаб, что оценки плотности потока становились ненадежными, оценивался его верхний предел по аналоговым записям. Если вокруг наблюдавшегося объекта имелся мешающий источник или источники, то поток этого объекта не оценивался. В тех случаях, когда было наблюдено лишь сильное мерцание, оценивались только плотность потока мерцающего компонента и его размер. Погрешность оценок размеров составляет $\frac{+100\%}{-50\%}$ (см. [11]).

Источники, у которых плотность потока мерцающего компоненбыла меньше 0.5 Ян, относились к немерцающим источникам

(HM).

3. Результаты наблюдений. За период 1980—1983 гг. было наблюдено 325 галактик, в 42 из которых обнаружено и измерено радноизлучение (11 из них имеют мерцающий компонент), для 201 оценена верхняя граница, а для 82 оценка потоков не производилась, поскольку около них находились мешающие источники.

Результаты наблюдений приведены в табл. 1-3.

В табл. 1 приведены радно- и оптические данные обнаруженных в радиодиапазоне галактик. В последовательных столбцах приведены следующие величины: 1-номер по NGC или IC (отмечены звездочками); 2, 3—номер группы по [3] и [4]; 4, 5—прямые восхождения и склонения по [14—19]; 6—видимая оптическая величина по [14—20]; 7-гелноцентрическая раднальная скорость по [20, 21]; 8-интегральный поток на частоте 102 МГц; 9-поток мерцающей компоненты на той же частоте, немерцающие источники отмечены—НМ; 10 - угловой размер мерцающей компоненты.

В столбце 4 табл. 2 приведены верхние границы интегральных потоков галактик, у которых радиоизлучение не было обнаружено.

В табл. З приведены данные о тех галактиках, вблизи которых на-блюдаются мешающие источники. В последовательных столбцах приведены следующие величины: 1, 2, 3-аналогичные величины, что и в табл. 1 и 2; 4-информация относительно мерцания; 5-предполагаемый мешающий источник.

В табл. 1-3 включены и данные о результатах наблюдений ря-

да галактик, входящих в группы, из работ [22-24].

Авторы благодарят проф. Э. Е. Хачикяна за обсуждение результатов и замечания.

Номер	К	CfA	α	7,	m	v	s	SM	.9"
1	2	3	4	5 -	6	7	8	9	10
224 ¹ 383 ² 598 684 936 ³ 1068 2793 2841 3031 3034 3067 3162 ⁴ 31661 ⁵	1 7 1 10 10 21 22 22 21 24	8 9 22 18 28 32 43 44 52 52 50 58	00h40m0 00 50.2 01 04.7 01 31.0 01 47.4 02 25.1 02 40.1 09 13.7 09 18.5 09 51.4 09 51.7 09 55.4 10 10.8	41° 00′ 28 45 32 09 30 24 27 24 	4.3 14.1 13.6 6.5 13.2 11.3 9.7 13.9 9.9 8.1 9.2 12.7 12.2 11.1	61 4985 5071 -180 3513 1421 1131 1681 637 44 247 1460 1303 1339	70+30 0.8+0.8 28+4 10.7+2 4.5+1 5.1+1 24+5 5.5+1 2 0+1 5.5+1 22+4 15+3 6.5+1.3 6.5+1.3	HM HM HM 1·5±0·5 5·0±1 HM HM HM HM HM 6·0±1	0.1 0.2
3169) 3177 3185 3627 3690) 694*	24 24 31	57 58 58 78 94 94 94	10 11.7 10 13.8 10 14.9 11 17.6 11 25.7 11 25.7	03 43 21 22 21 56 13 16 58 50 58 50	11.9 12.8 12.9 8.9 12.7 12.6	1299 1309 1237 737 3101 3115	1.6±1 4.0±1 12±3	H.M 0.9±0.5 2.0±0.5 HM	0.1 0.7
3726 3888 4151 4258* 4261) 4264)	39	94 94 94 94 106	11 30.6 11 44.9 12 08.0 12 16.5 12 16.8 12 17.0	47 18 56 14 39 41 47 35 06 06 06 07	11.2 12.6 11.2 9.6 12.0 13.9	861 2408. 989 449 2200 2633	2.5+1 1.5+1 6.0+1 8.0+2 70+10	HM HM 0.8±0.5 — HM	0.1
4321 43747 44868 4904 5055 51941 5195] 5322	42 44 46 46 46 48	106 106 106 106 116 116 116	12 20.4 12 22.5 12 28.3 12 28.3 13 13.5 13 27.8 13 27.8 13 47.6	16 06 13 10 12 40 00 14 42 17 47 27 47 31 60 26	10.6 10.8 10.4 13.2 9.7 8.8 10.6 11.3	1560 1033 1265 1164 497 474 558 1804	4.5+1 30+10 2000+300 8.0+1.6 20+4 3.5+1	HM HM 0.9+0.5 HM HM	0.1

Продолжение таблицы 1

1	2	3	4	5	6	7	8	9	10
5678 5692 5866 7317 7318 A 7318B 7319	48 54 60 60 60 60	140 144 145 152	14 20.0 14 30.6 14 35.8 15 05.1 22 33.6 22 33.7 22 33.7 22 33.8	15 18 58 09 03 37 55 57 33 41 33 43 33 43	14.2 12-1 13.3 11.1 15-3 14-9 14.4 14.8	2240 1929 1610 672 6736 6967 6005 6935	1.5±0.5 2.5±1 15±3 - 5.0±2	1.5±0.5 HM 3.0±1 0.7±0 5 1.0±1	0.1 0.1 1.0

Примечания к табл. 1

¹ вокруг центра наблюдаются некоторые мерцающие источники (см. [23])

² отождествляется с 3С 31

³ возможно мерцает

⁴ на 1^m раньше наблюдается мерцающий источник с S_M=3Ян

⁵ мешает мерцающий источник

в на 1m.5 раньше наблюдается мерцающий источник

⁷ мешает NGC 4486=3 C 274

⁸ у этой галактики невозможно было обнаружить мерцающий компонент с потоком меньше чем 50 Ян

Таблица 2

Необнаруженные в радиоднапазоне галактики

Номер	K	CfA		Номер	К	CfA	
1	2	3	4	1	2	3	4
671.2 67A1.2 681 691 701.2 711 721 72A1	3 3 3 3 3	2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3338 ⁵ 3348 3359 3368 3379 3384 3389 3395	27 27 27 27 27 29 29 29	68 69 68 68 68 68 68 67	3 2 1 1 1 2 2 3 2 1 1
125 126 127 128 130 160 182 185 194 198 200 6283 672 750 751	1 9 9	5 6 6 6 17 22	3 3 3 3 2 3 1 3 3 2 3 1	3412 3441 3457 3489 3504 3512 3556 3605 3607 3608 3611 3613 3619 3631 3631 3633	31 33 33 33 34 34	68 70 68 68 71 71 94 77 77 77 76 94 94 94 94	i 1 1
992 1087 2268 2276 2300 2336 2551 2633 2798 2199 2859	10 16 16 16 16 16 16	29 32 45 45 43	1 1 1 1 2 3 1 2 2 2	3718 3733 3738 3756 3769 3850 3913 3917 3928 3938 3958		94 94 94 94 94 94 94 94 94	1 1 1 3 2 2 2 1 4 1 1 2 2 2 1 2 2 1 2 2 1 2 1 2
2880 2911 2914 2976 3021 3077 3107	22 21 22	46 47 47 52 50 52 53 57	1 2 3 1 2 2 2 1 2 2 4 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3963 4051 4064 4116 4123 4136 4157		91 94 97 100 100 94 94	2 1 1 2 1 1
3156 3158 3159 3161 3163 3187 ⁴ 3189 ⁴ 3190 ⁴ 3193 ⁸	23 23 23 23 24 24 24	57 56 58 58 58 56 58	2 2 2 2 2 2 2 2 2 2 3 4 2	4168 4178 4189 4237 4344 4396 4414 ^{6,5} 4457 4458	42	106 106 106 106 100 106 94 106 106	2 1 1 1 1 2 2 1 1
3226 3227 3239 3245 3277 3301	24 24 26	58 58 58 60 60	2 1 3 1	4517 4517 A 4517 A 4522 4525 4532	-16	106 106 106 94 106	1 1 1 1 2

Продолжение таблицы 2

-				1	2	3	1
1	2	3	4			1	-45
1				5600		140	1
0.5			2	5633	48		
45679		106	3	5638		145	
45685		106		5653	50	143	1
4569		106	7.	5660		135	1
4571		:06	1	3668		145 .	
4595		106	2	5072		143	1
4608	1	106	1 2	2012	48	135	1 2
4638	45	106		5676	48		200000000000000000000000000000000000000
46394		106	3 2 3	5682	48		2
46474	45	106	3	5683	48		2
1649	45	106	2	5689	7.0	145	2
4654°		106	3	5701	53	150	1
4688		106	1	5806		150	1 3
47134		106	2	5813	53	150	1 5
4725		94	2	5831	53	150	4 3
4765		106	3	5838	53	150	
47724		106	2 2 3 3 2	5845	= 43	150	1 9
488C		106	2	5846	53	130	1 1
4900		106	1		0		1 9
5005		112	1	5846A	53	1.50	22
5173	48		1	5850	53	150	1 1
5198	48		2	5854	53	150	
5300	10	124	1	5879	54	152	
5308	48	122	1 2 1 2	5905		151	1
5313	40	123	ī	5962		156	2
2010	- 15	120	•	5970		157	1
5363		124	1	5982		158	!
		124	i	5985		158	2 2
5364	49	123	9	6003		159	2
5371	48	135	2 2	7448		163	2
5377	48	123	ī	7463	62		1
5383	49	127	5	7464	62		1
5384		126	i	7465	62 62		- 3
5394	50	126	i	7678	02	168	1
5395		120	1 2	7769	63	,,,,	
5430	10	122	3	7770	63	100	3
5448	-18	135	3 2 2 1	7771	(3		3
5473	48	132 128	2	1727*	(0	22	9
5474	46	128				109	3
5480	48	135	1	3582*	4	100	3 3 2 3 3
5481	48	135	1	A0026	-1		"
5485	48	132	2 2 1	1000 1040		96	5
5486		123	2	1200- -1646			2
5533	50	141		1352+1517		125	1 2
5544	50	141	1				
5545	50	141	1	1			
5557	50	141	1	pr			

Примечання к табл. 2

 $^{^{1}}$ NGC 67, 67A, 68, 69, 70, 71, 72, 72A—на 1m .5 к занаду изблюдается источник с S=2 Ян.

² NGC 67, 67А, 70—в список Караченцева [3] эти объекты не входят, но ввиду близости их координат и лучевых скоростей к членам группы № 3, возможно, они принадлежат к этой группе.

⁸ NGC 628—на 2^m к западу наблюдается источинк с S=2.5 Ян.

⁴ NGC 3187, 3189, 3190, 3193, 4772—возможно мерцают

 $^{^{5}}$ NGC 3338—возможно мерцает с ∆S ~ 0.3 Ян.

⁶ NGC 3664, 4414, 4639, 4647, 4654, 4713—confusion

⁷ NGC 4414—возможно излучает с S=2 Ян.

⁸ NGC 4567, 4568-мешвет боковой лепесток NGC 4486.

Таблица 3

Галактики, вблизи которых наблюдаются мешающие источники

Номер	К	CfA		Предполагаемый мешающий источинк
1	2	3	4	5
205	1			NGC2_4
221	1		. —	NGC224
1055		32		на 40° посточнее находится источник с S=10.5 Ян
1073	10	32	HM	S _м 2 Ян, 0=0°8 на 1 ^м восточнее находится источник с S=3 ^м Ян
2964	21	50		на 1 ^{та} , 5 западнее находится мерцающий источник
2668	21	50	311	на 1т.5 западнее находится мерцающий источни
3165		57	.:-	NGC 3166 и мерцающий источник
3254	26	60	- HM	на 2 ^m восточнее находится источник с S=10 Ян
3351	27	68		на Іт з паднее находится мерчающий источник с
3367		66	нм	S = 8.5 Ян на 50° во гочнее находится источник с S = 2 Ян
3370		68		на 2m посточнее находится мерцающий источник
3414		71	ii	на 1 ^m западнее находится мерцающий источник
3418		71	_	на 1 ^m западнее находится мерцающий источник
3601	- 4	74	HM	Cas A
3623	31	78	HM	на 30° восточнее находится источник с S=5.5 Ян
3626 3640		77 76	HM	протяженный источник сильный протяженный протяженный источник
3641		76	_	сильный прогиженный источник
3659		77	HM	на 2 ^{пт} восточнее находится сильный исто ник
3681	35	77	HM	протяженный источник с S>15 Ян
3684	35	77	HM	протяженный источник с S>15 Ян
3686	35	77	HM	протяженный источник с S>15 Ян
3691		77	HM	Cas A
378 0 3906		94 94	HM	на 40° западнее находится источник с S=5 Ян
3949	1	94	HM	на 1 ^m . 5 западнее находится мерцающий источник на 2 ^m западнее находится источник
3953		94	HM	на 1 ^m . 5 восточнее находится источник с S=6 Ян
3982		94	НМ	на 1 т западнее находится сильный источник
3991	37	93	_	на 1 ^m западнее находится мерцающий источник с S 10 Ян
3994	37	93	_	на I ^m западнее находится мерцающий источник о S=10 Ян
3995	37	93	-	на I ^m западнее находится мерцающий источник с S=10 Ян
4085		91	HM	на 50° западнее находится источник с S=2.5 Ян
4088		94	HM	на 50° западнее находится источник с S 2.5 Ян
4102		94	HM	на 30° западнее находится источник с S 5 Ян
4269		106	HM	NGC 4261 64 II NGC 4486
4485		94	HM	сложная область
4490 4559		94 94	HM	сложная область
4736		94	HM	с двух сторон источники на 2 ^m . 5 западнее находится источник
4747		94		на 15' южнее находится источник с $S_{\rm M}=2$ Яв, $N=0^{\prime\prime}$.
4754		106	= 5	нэ 1m западнее находигся мерцающий источник о S=4 Ян
4762		106		confusion
5033		115	-	на 40° восточнее находится мерцающий источник с S=3.1 Ян
5204	46		HM	на 30° западнее находится источник с S=5 Ян
5457	46	128	- '	на 1 ^m западнее находится мерцающий источник о S=12 Ян
5560		139		на 1 ¹¹¹ , 5 западнее находится мерцающий источник
5566	52	139		на 1m. 5 западнее находится мерцающий источник
5574	52	139		на 1 ^m . 5 западнее находится мерцающий источник
6927	58		HM	на 1 ^т западнее находится источник с S 5 Ян
6927A	58 58		HM	па 1 ^m западнее находится источник с S=5 Ян
6930	58 58		HM HM	на 1 ^m западнее находится источник с S=5 Ян на 1 ^m западнее находится источник с S=5 Ян
2000	00		1131	на 1 западнее паходится источник с 3=3 Ян

Пополнение к табл. 3

1. NGC 375, 379, 380, 382, 384, 385, 386, 388 находятся в группах К7 и/или

CfA9 близ радиогалактики NGC 383-3C 31.

2. NGC 4216, 4267, 4387, 4388, 4406, 4413, 4425, 4429, 4435, 4438, 4473, 4476, 1477, 4478, 4486В, 4491, 4497, 4503, 4550, 4564, 4579 и 1228+1233 находятся в СГА 196 близ радиогалактики NGC 4486=3C 274.

u. a. vuzsbusuv, v. u. engeuvvbusuv

ԳԱԼԱԿՏԻԿԱՆԵՐԻ ԴԻՏՈՒՄՆԵՐ ԽՄԲԵՐՈՒՄ 102 ՄՀց **ՀԱՃԱԽՈՒԹՅՈՒՆՈՒՄ**

Միջմոլորակային պլազմայի անհամասևռություններում առկայծումների գրանցման հղանակով կատարվել են խմբերում գտնվող 325 գալակտիկաների դիտումներ 102 ՄՀց հաճախության վրա։ 42 գալակտիկաներում մայտնաբերվել է ռադիոճառագայթում։ Դրանցից 11-ն ունեն առկայծող բաղադրիչներ։

A. P. MAHTESSIAN, M. A. HOVANNISIAN

OBSERVATION OF GALAXIES IN GROUPS AT 102 MHz

By interplatetary scintillation method observation of 325 galaxies in groups have been made at 102 MHz, 42 galaxies were detected, 11 of which have scintillating components.

ЛИТЕРАТУРА

1. А. П. Магтесян, Сообщ. Бюраканской обс., 57, 21, 1985.

2. А. П. Магтесян, Тезисы докладов республиканской конференции молодых ученых по физике, Ереван, АН АрмССР, 1983, с. 96.

3. И. Д. Караченцев, Проблемы космической физики, 5, 201, 1970.

4. M. J. Geller, J. P. Huchra, Astrophys. J. Suppl., 52, 61, 1983.

- 5. В. В. Виткевич, А. А. Глушаев, Ю. Т. Ильясов, С. М. Кутузоп, А. Д. Кузьмин, И. А. Алексеев, В. Д. Бунин, Г. Ф. Новозенов, Г. А. Павлов, Г. С. Соломин, М. М. Тянтин, Раднофизика, 19, 1594, 1976.
- 6. P. S. I. Williams, S. Kanderdine, J. E. Baldwin, Mem. Roy. Astron. Sos., 70, 53, 1966. 7. В. С. Артюх, В. В. Виткевич, Р. Д. Дагкесаманский, В. И. Кожухов, Астрон. ж.,

12, 567, 1969. 8. J. D. H. Pikkington, P. F. Scott, Men. Roy. Astron. Soc, 69, 183, 1965.

- 9. K. L. Kellerman, J. I. Pauliny-Toth, P. J. S. Williams, Astrophys. J., 157, 1, 1969.
- 10. В. С. Артюх, В. И. Шишов, Астрон. ж., 59, 896, 1982.

11. В. С. Артюх, Астрон. ж., 58, 208, 1981.

12. В. И. Шишов, Т. Д. Шишова, Астрон. ж., 55, 411, 1978.

13. M. Marlanns, Radio Sci, 10, 115, 1975.

- 14. F. Zwicky, E. Herzog, P. Wild, Catalogue of Galaxies and of Clusters of Galaxies, vol. 1, 1961.
- 15. F. Zwicky, E. Herzog, Catalogue of Galaxies and of Clusters of Galaxies, vol. 2, 1963.

- 16. F. Zwicky, E. Herzog, Catalogue of Galaxies and of Clusters of Galaxies, vol. 3, 1966.
- F. Zwicky, E. Herzog, Catalogue of Galaxies and of Clusters of Galaxies, vol. 4, 1968.
- 18 F. Zwicky, M. Karpowicz, C. T. Kowal, Catalogue of Galaxies and of Clusters of Galaxies, vol. 5, 1965.
- 19. F. Zwicky, T. Kowal, Catalogue of Galaxies and of Clusters of Galaxies, vol. 6, 1966.
- 20. G. de Vaucoleurs, A. de Vaucoleurs, H. G. Corwin, Jr., Second Reference Catalogue of Bright Galaxies, The University of Texas Press, 1975.
- 21. J. P. Huchra, M. Davis, D. Latham, J. Tonry. Astrophys. J. Suppl., 52, 89, 1983.
- 22. В. С. Артюх, М. А. Оганнисян, Астрофизика, 19, 655, 1983.
- 23. В. С. Артюх, М. А. Оганнисян, Астрон. ж., 61, 639, 1984.
- 24. В. С. Артюх, М. А. Оганнисян, Астрофизика, 22', 211, 1985.