С. С. РУСТАМБЕКОВА, Р. А. ЕПРЕМЯН

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ГРУППЫ ЗВЕЗД ВОКРУГ ₁ Саз В УЛЬТРАФИОЛЕТОВОЙ И ВИДИМОЙ ОБЛАСТЯХ

С появлением возможности ведения астрономических наблюдений за пределами земной атмосферы параллельно стали проводиться сопоставления результатов двух категорий наблюдений—наземных (оптический диапазон) и внеатмосферных (ультрафиолетовая область). Подобные сопоставления внесли ясность в некоторые вопросы, для которых паблюдения только наземные или только внеатмосферные недостаточны. Это относится, в частности, к распределению энергии в непрерывных спектрах звезд.

В настоящей работе приведены результаты наблюдений—внеатмосферных и наземных—с целью построения сводных кривых распределения энергии в непрерывных спектрах 33 звезд классов ВО—G8 из области неба вокруг ¡Cas в интервале длин волн 2200—4800 А и в шкале абсолютных энергетических единиц (эрг · см⁻ · С⁻¹ · А⁻¹) · При этом ультрафиолетовые (2200—3800 А) наблюдения были проведены с помощью «Ориона-2», а длинноволнорые (3500—4800)—на 70 см менисковом телескопе Абастуманской обсерватории с 8-градусной объективной призмой. Список упомянутой группы звезд представлен н табл. 1. Все эти звезды входят в «Каталог ультрафиолетовых спектров 900 слабых звезд» [1].

Содержание первых трех столбцов табл. 1 взято из «Қаталога Ориона-2» для исследованных в настоящей работе 33 звезд. В таблице приведены также избытки цвета E(B-V) по [2], когда они имелись, и определенные (они отмечены звездочкой), исходя из следующих соображений. В [2] наряду с избытками цвета приводятся также данные о модулях расстояний $|m-M_0|$ для этих звезд. По этим данным была построена зависимость E(B-V) от $|m-M_0|$. Затем по известной визуальной величине и средней для данного спектрального класса [3] абсолютной величине были найдены значения $|m-M_0|$ для звезд с известными избытками цвета и с помощью построенной зависимостн определены значения E(B-V); они отмечены звездочкой. Имея в виду, что все звезды паходятся в области γ Саз, ошибки измерений, следует думать, не должны быть велики.

Кривая относительной спектральной чувствительности (редукционная кривая) 70 см телескопа с объективной призмой (дисперсия 166 А/мм у H₁) и фотопленкой Кодак—IIа—О была построена с помощью звезды HD 6382, класса A0—Al, с нулевым избытком цвета. При этом в качестве спектра сравнения была взята модель Веги (A0V, Т_{эфф} — =9400°K и lg g=3.95 [4]). Абсолютная спектральная чувствительность была найдена по описанной в [5] методике, путем сопоставления спектрограмм, полученных в Абастуманской обсерватории для звезды HD 5015 спектрального класса F8V, с известными абсолютными величинами потоков для этой же звезды [6].

На рис. 1 приведены кривые абсолютного распределения энергии в спектре HD 5015 по данным трех источников: спектральным снимкам «Орнона-2», Абастуманским спектрам (точки; стрелка на 3500 А здесь

С. С. РУСТАМБЕКОВА, Р. А. ЕПРЕМЯН

Основные данные об псследованных звездах Тэф. °К E(B-V)V Спектр HD, BD 30000 010 94 BOla 91 08 5552 0.73 8.23 30000 **B01** 6162 0.31 22500 BIIV 7252 0.73* 25000 9.0 +57°153 B11-11 0.73 22500 8.35 B31B 7103 0.53* 15000 7.57 B51B 4768 0.22 18000 8.4 B8V -60°130 0.21 18000 8.0 5342 **B811** 0.35* 13000 8.74 **B811** 6048 0.29 0.24 15000 8.86 **B911** 7370 B8p B9V 12000 8.47 5797 0-24= 12000 9.5 62°158 62°159 0.10* 8.0 B9V 11000 0,16* 11000 8.8 57°177 B9V 0.13* 8.55 AOIV 10000 3673 4296 0.16* 8.81 AOIII 10000 8.84 6.74 7.82 0.16* 10000 5429 AOV 0.03 3519 **B8IV** 12000 11000 0.009 B9V 5409 7.81 AIIV 0.05 10000 5071 A0-A11V A1V 8.25 0.019 6382 9500 6.87 0.021 6475 9000 A3V 7.35 -0.01* 8000 3881 7.15 A3V F2IV 0 7500 5813 8,68 0.03* 7000 6500 4442 3724 8.69 -0.02* F4V 8.8 +-57°149 -0.015* 6500 F5IV -0.011 5015 4.80 6000 F8V 9.2 F8V -0.U2* 6250 4602 7.68 0 6755 GOV 6000 6500 5500 5,83 0.017 6210 F8V 6.43 5459 0.002 **G8III** 4.04 5395 **G8111-IV** 0.004 5500?

λ(λ)

Рис. 1. Кривая распределения монохроматических потоков в непрерывном спектре звезды HD5015 в абсолютных энергетических единицах (до 3500 А по данным «Орнона-2», длиннее 3500 А-точки по Абастуманским материалам, круж-KH ПО Данным [6])

Таблица 1

С. С. РУСТАМБЕКОВА, Р. А. ЕПРЕМЯН

Рис. 3. То же, что и на рис. 2, для звезд классов В6-А0

и на всех последующих рисунках указывает коротковолновую границ наземных наблюдений) и по результатам наземных наблюдений [6] (кружки). Коэффициенты абсолютизации для двух измеренных плас тинок оказались равными—12,78 и —13,08 соответственно.

Для исследованных 33 звезд обработано 66 спектрограмм в области 3500—4800 А. Измерения проводились с интервалами Δ. 25А, иногда 10 А.

Рис. 4. То же, что и на рис. 2, для звезд классов В8—А7. Имеется депрессия в непрерывном спектре звезды HD3519 на 2400 А

Найденные распределения энергии в непрерывных спектрах звезд исправлялись за влияние межзвездного избирательного поглощения для случаев с $E(B-V) \ge 0$. 03, что соответствует расстояниям ~400 пс [2] (для г<400 пс селективное поглощение практически отсутствует [7]).

Результатом наших измерений являются распределения энергии в спектрах каждой из исследованных звезд в шкале абсолютных еди-

С. С. РУСТАМБЕКОВА. Р. А. ЕПРЕМЯН

Рис. 5. То же, что и на рис. 2, для классов F2-G8

ниц. Они представлены в графической форме на рис. 2—5. При этом на рис. 2 и 3 распределения энергии исправлены за влияние межзвездного поглощения по избытку цвета E(B-V) и известной зависимости $X_{\lambda} = E(\lambda - V)/E(B-V)$ [8]. В случае же двух последних рисунков ис-

правления за межзвездное поглощение не проводились. Результаты наших наблюдений в коротковолновой области (2200—3500 A) представлены в [1] как в табличной, так и графической форме, в длинноволновой же области мы ограничились представлением лишь их графиков.

Полученные распределения энергии сопоставлялись с теоретическнми моделями Куруча [4], и найденные таким образом эффективные температуры приведены в последнем столбце табл. 1.

На рис. 2 приведены распределения энергии в спектрах звезд классов BOI—B8II. Для звезды BD+60° 130 в каталоге «Ориона-2» указан спектральный класс B8, найденный нами ранее, согласно Абастуманским критериям классификации. Однако, как видим, комбинированные наблюдения дают для спектрального класса этой звезды B5, быть может даже B3.

На рис. З представлены результаты для звезд классов В6—А0. Хочется заметить, что для HD 7370 тэкже уточнился спектральный класс В6 (в каталоге для нее указан В8). То же самое можно сказать н о звездах HD 3881 и HD 5813, распределения энергия которых приведены на рис. 4. В каталоге для них приведены классы А3, на основании последних они оказались класса А5 и А7 для HD 3881 и HD 5813 соответственно.

Поздние спектральные классы F2—G8 представлены рис. 5. В случае двух последних звезд, HD 5459 и HD 5395, особенно у второй, сопоставление с теоретической моделью T=5500°K проведено условно, так как спектральному классу G8 соответствует T_{*ФФ} =5000°, теоретическая модель для которой в сетке Куруча отсутствует.

Аналогичная картина между наблюдениями и теорией, по крайней мере в районе 2800 А, налицо и для звезды НD 76294, спектрального класса G8III, наблюденной спутником IUE [9] (см. нижний угол рис. 5).

Сшивание ультрафиолетовых и наземных распределений энергий (в районе 3500 А) позволило уточнить коэффициенты редукции да для области 3815—3478 А, приведенные в каталоге «Ориона—2» [1].

Гоправки).	для	десяти	точек Дідбі	следующне:).	Δ1gδ).
3815			-0.31	3620	-0.12
3774			-0.28	3584	-0.09
3734			-0.23	3548	-0.07
3674			-0.18	3515	-0.06
3656			-0.15	3478	-0.03

Г

Чтобы убедиться в правомерности полученных результатов проводилось сопоставление, с одной стороны, результатов «Ориона—2», собранных, в частности, в «Каталоге ультрафиолетовых спектров 900 слабых звезд» [1], с результатами спектрофотометрических наблюдений Copernicus, OAO—2, TD—1A, ANS, IUE, а также расчетные значения потоков в U и B лучах с наземными наблюдениями, с другой.

Сопоставление в ультрафиолетовой области можно провести в отношении, по крайней мере, двух, а может быть и трех десятков звезд, которые были наблюдены и «Орионом—2» и одной из упомянутых орбитальных обсерваторий (максимум числа звезд, наблюденных «Орионом—2», приходится на 10^m, в то время как для вышеперечисленных обсерваторий этот максимум приходится на 6^m—7^m). Число сопоставляемых звезд может быть больше—порядка 200—в случае S2/68 (TD— 1A) [10], но в этом случае речь будет идти о сравнении потоков лишь в одной точке—на длине волны 2740 А. Подобно тому, как это было выполнено в отношении 108 звезд спектральных классов О4—F8 (когда сопоставления проводились между S2/68 и ОАО—2 [11]). нами были вычислены разницы потоков на 2740А для 96 звезд классов О6—G0 из областей неба вокруг 7 Саз. ЗАшг. 7 Анг. Tau. * Ori:

∆F=1gF2740 (S2/68)-1gF2740 ("Орнон-2").

Полученные разницы ΔF в зависимости от спектральных классов нанесены точками на рис. 6. Хотя на рисунке это и не отмечено, но

какой-либо особой селекции в отношении классов светимости (сверлгиганты, гиганты, карлики) при этом не сыло обнаружено. Как видим, разницы ΔF в среднем больше у звезд классов В, чем у поздних спектральных классов. Систематическое различие между потоками, измеренными S2/68 и «Орионом—2» на волне 2740 А составляет в среднем— 0,10. В уже отмеченной публикации [11] разница в потоках между данными S2/68 и ОАО—2 оказалась порядка —0.08. Заметим, что данные S2/68 на 2740 А относятся к спектральной полосе пропускания 310 А, в то время, как спектральное разрешение «Орнона—2» на этой длине, также как и ОАО—2, порядка 22 А.

В табл. 2 приведены логарифмы потоков F (3500) и F (4270 или (4400) для 37 звезд, расположенных в области Cas, причем для 14 из них (они отмечены звездочкой) распределения энергии в настоящей работе не рассматривались.

Во втором и третьем столбцах даны U и В величины, найденные по известным значениям В—V и U—В для исследованных звезд [2, 12]. Потоки в логарифмической шкале в U и В лучах (U=3500 A, B=4270 А для В—А звезд и 4400 А для F—G) по известной величине потока на этих же длинах волн звезды HD 5015 были найдены из следующих соотношений:

$$lg \frac{F_{U}^{*}}{F_{U}^{0}} = -0.4 \ (U^{*} - U_{0}),$$
$$lg \frac{F_{B}^{*}}{F_{0}^{0}} = -0.4 \ (B^{*} - B_{0}).$$

Как видим, расчетные значения потоков, найденные как по наблюдениям «Ориона—2», так и по наземным наблюдениям, находятся не в плохом согласии друг с другом. В среднем расхождения в U и В

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ГРУППЫ ЗВЕЗД 17

.

Таблица 2

Логарифмы потоков F (3500) и F (4270) исследованных звезд в области f Cas							
		В	lg F*(3500)		lg F*(4270)		
HD, BD	U		вычислен.	_Орион-2*	вычислен.	наземные	
5015	5m 48	5m 36	-10,59		-10,36		
5552	9.50	9.79	-12,20	-12,14	-12,13	-12,07	
6182	8.24	8.70	-11,69	-11,68	-11,70	-11,65	
7252	6.47	7.21	-10,99	-11,05	-11,10		
7103	8.60	8.88	-11,84	-11,78	-11.77	-12,79	
4768	7.61	7.95	-11,44	-11,39	-11,40	11,30	
		8.49	1000		-11,61	-11,66	
7370		8.99			-11.81	-11,87	
5342	7.97	8.13	-11,59	-11,62		-11,52	
6048	8.73	8.97	-11,89	-12,00	-11,80	-11,64	
5429	8.9/	9.07	11,99	-11,99	11,04	-11,00	
5797	8.8/	6.75	-11,95	-12,00	10.00	_10.50	
3519		7 89		10-1 C	-11.34	_11.21	
5409	0 55	8 43	11.80	_11.05	_11.59	_11.58	
0382	7 05	7.87	-11.58	_11.59	-11,36	-11.32	
5071	1.50	6.87	-11100	-11103	-10.96	-10,90	
04/0		9.10			-11,86	-11,91	
2704		9.14		14. 19 11	-11,87	-11,95	
6210		6.37			-10,76	-10,82	
6755	8.48	8.40	-11,79	-11,89	-11,58	-11,70	
5459		7.34			-11,15	-11,17	
5395	5.66	5.56	-10,66	-10,97	-10,44		
6832*	8.06	8.35	-11,62	-11,70	-11,56	-11,49	
6073*	9.29	8.40	-12,11	-12.22	-11,58	-11,57	
5408*	5.15	5.48	-10,46		-10,39	-10,42	
7157*	6.34	6.64	-10,93	-10,98	-10,87	-10,84	
4674*		8.52			-11,62	-11,67	
7331*	7.69	7.73	— I1,47	-11,49	-11,31	-11,20	
6130*		6.41			-10,78	10,8/	
5649*		9.31			-11,94	-11,69	
5890*		9.19	1		-11,69	11.70	
5851		6.39			-11,00	11 08	
5702*	0.04	9.30	11 60	11.65	-11,99	-11,90	
4302	8.24	9.02	-11,09	-11,05	-11,43	_11.48	
5/4/*	7 00	6.03	11.31	_11.33	_10.63	_10.64	
5234	1.20	0.00	-11/01	-11,00	-10103	-10104	

лучах составляют 0.12 и 0.15 соответственно. Возможно случаи значительных отклонений вызваны неточностями в определении U—B и B—V.

В связи с этим отметим, что сопоставления фотометрических потоков ОАО—2 для 531 звезды и спектрофотометрических данных ОАО—2 для 213 звезд с UBV фотометрией для большинства звезд, наряду с фотометрией нидерландского спутника ANS для 363 объектов (1550—3300 A) и потоками TD—1A для 488 звезд дали расхождение 0^m 13 в U лучах и 0^m67 в В лучах [13].

Спектральное разрешение менискового телескопа «Орион—2» с объективной призмой позволило исследовать, в основном, непрерывные спектры звезд, сильные спектральные линии, слившиеся друг с другом, а также иного рода локальные спектральные образования звездного, околозвездного или межзвездного происхождения. Обращает на себя внимание депрессия в непрерывном спектре

Обращает на себя внимание депрессия в непрерывном спектре звезды HD 3519, класса B8IV на λ 2400 А. Эта депрессия свидетельствует о том, что вокруг этой звезды, вероятно, имеется околозвездное

облако, подобно тому, как это было выявлено у ряда горячих звеза. на основании как данных «Ориона—2» [14], так и ОАО—2 [15].

По величине или мощности наблюдаемой депрессии H₀ на 2400 A можно определить, как это было сделано ранее [16], некоторые параметры окружающего звезду облака. в частности, концентрацию волородных атомов, радиус и массу облака.

родных атомов, раднус и массу облака. Прежде всего необходимо найти глубину депрессии H₀ (2400), выраженную в звездных величинах. Если Аш₀—уровень депрессии на теоретической модели, а Ат.—уровень депрессии на наблюдаемой кривой, то можно записать для H₀ (2400):

$$H_{a}(2400) = [1 - 10^{-0.4} (\Delta m^{*} - \Delta m_{a})].$$

Найденная таким образом глубина депрессии для звезды HD 3519 оказалась равной 0 . 28. Приведенная оптическая толща на 2400 A в этом случае будет равна to=0,9 (использовался рис. 15 в [16]).

Параметры же облака—концентрацию водородных атомов по. раднус R₀ и массу Ж₀/Ж_☉ —мы находим с помощью следующих форму 7 [16]:

 $\begin{array}{l} n_{0} = 3,3 \cdot 10^{4} \cdot \Phi \cdot t_{0}^{2} \text{ cm}^{-3}, \\ R_{0} = 10^{-2} \cdot (\Phi \cdot t_{0})^{-1} \text{ nc}, \\ \mathfrak{M}_{0} (\mathfrak{M}_{0}) = 3 \cdot 10^{-3} (\Phi \cdot t_{0})^{-1}, \end{array}$

где Ф—безразмерный параметр, зависящий от коэффициента дилюции W и отношения концентраций атомов в фотосфере звезды n, и облаке n₀: $\Phi = W \frac{n_*}{2}$. Найденные численные значения n₀, R₀ II $\mathfrak{M}_0/\mathfrak{M}_0$

лаке п₀: Ф = w — . Паиденные численные значения п₀, к₀ и жолоко п₀ для ряда значений Ф следующие:

Φ	no	Ro	Mo/Mo
	См-3	пс	
0.005	1,3.10*	2,2	130
0.01	2,7.10 ^s	1,1	33
0.05	1,3.103	0,2	1,3
0.1	2,7.103	0,1	0,3

Сделать выбор среди этих вариантов мы не можем, не располагал дополнительными данными о числовом значении Ф. Тем не менее результаты расчетов, соответствующие варианту с $\Phi = 0,1$, кажутся нам более правдоподобными: в этом случае концентрация в обращающем слое звезды B8IV и при раднусе звезды $R_* \approx 3R_{\odot}$, получается равной $n_* \approx 3 \cdot 10^{15}$ см⁻³, величина, типичная для атмосфер звезд этого класса.

А вообще большне значения для масс околозвездных облаков, повидимому, не являются, в принципе, невозможными. По крайней мере на это указывают результаты повейших субмиллиметровых наблюдений [17], проведенных в полосах СО (80—120 гГц) в отношении группы из одиннадцати звезд классов ВО—А7. В семи случаях массы околозвезлных облаков вокруг этих звезд оказались больше ста солнечных массот 300 \mathfrak{M}_{\odot} до 900 \mathfrak{M}_{\odot} и только в четырех случаях — меньше ста \mathfrak{M}_{\odot} в пределах от 1 \mathfrak{M}_{\odot} до 5) \mathfrak{M}_{\odot} .

Следует заметить, однако, что даже при $\Phi \sim 0,1$, когда концентрация водородных атомов в облаке получается порядка 10^3 см⁻³, оно не может быть обнаружено прямыми наблюдениями в оптическом диапазоне: центральная звезда класса В8 с эффективной температурой 12000°К недостаточно мощная для того, чтобы осветить его до пределов обнаружения,

Заключительные замечания

1. Сопоставления потоков на 2740 А 96 звезя классов Об-G8 по ланным «Орнона-2» и фотометра S2/68 показали систематическое отклонение со средним значением-0,10 от результатов \$2/68.

2. Комбинированные распределения энергии в диапазоне 2200-4800 А позволили уточнить спектральные классы для нескольких звеза и найти эффективные температуры для всех исследованных звезд метолом моделей атмосфер: сопоставления проводились с теоретическими паспределениями Куруча.

Уточнены также коэффициенты редукции для области 3815-3478 А. приведенные в каталоге «Ориона-2».

3. Расчетные значения потоков в U и В лучах находятся в хорошем согласии с тем, что дали наблюдения «Ориона-2», с одной стороны, п наземные, с другой.

Авторы благодарны профессору Г. А. Гурзадяну за полезные советы в процессе выполнения данной работы.

14 ноября 1984 г.

Ս. Ս. ՌՈՒՍՏԱՄԲԵԿՈՎԱ, Ռ. Ա. ԵՓՐԵՄՑԱՆ

Y Cas ՇՈՒՐՋ ՄԻ ԽՈՒՄԲ ԱՍՏՂԵՐԻ ՍՊԵԿՏՐԱԼՈՒՍԱՉԱՓԱԿԱՆ ՀԵՏԱՉՈՏՈՒԹՅՈՒՆ ՈՒԼՏՐԱՄԱՆՈՒՇԱԿ ԵՎ ՏԵՍԱՆԵԼԻ ՏԻՐՈՒՅԹՆԵՐՈՒՄ

Ննրկայացված են 33 B0-G8 աստղերի սպնկարալուսաչափական՝ երկրային և արտամթնոլորտային դիտումների համակցված արդյունըները։

Բերված են այդ աստղերի անընդհատ սպեկտըներում էներդիաների բաշխման կորհրը 2200—4800A այիքային միջակայքում՝ արտաահայտված էներգետիկ բացարձակ միավորով։

«Օրիոն-2» և S2/68 գիտափորձհրով ստացված հոսքերի համեմատությունը 2740A ալիքում ցույց է. տալիս, որ դրանց միջև կա մշտական շեղում՝ միջի-นกเม-0,10 չширици

U և B ճառագայթներում այդ աստղերի հոսքերի հաշվարկային արժեքները՝ ստացված Համապատասխանորեն «Օրիոն-2»-ի և երկրային դիտումներից, ստնվում են համաձայնության մեջ։ Համեմատելով էներգիաների համակցված pwy/unւմները 2200-4800A տիրույթում տեսական մոդելների հետ, ճշտրվիլ են որոշ աստղերի սպեկտրալ դասերը և բոլոր ուսումնասիրված աստղերի համար որոշվել արդյունարար ջերմաստիճանները (աղյուսակ 1)։

S. S. RUSTAMBEKOVA, R. A. EPREMIAN

A SPECTROPHOTOMETRIC INVESTIGATION OF A GROUP OF STARS AROUND Y CAS IN ULTRAVIOLET AND VISIBLE REGIONS

The results of the spectrophotometric measurements of the combined-ground based and space-of 33 BO-G8 type stars are presented. Combined energy distributions in the continuum of these stars in the

range 2200-4800 Å in absolute energetic units are built. Comparison of stellar fluxes at 2740 Å as observed by S2/68 and "Orion-2" showes a sistematic deflexion with mean value of -0.10. Calculated values of fluxes in U and B bands with either "Orion-2" and ground based observations show good agreement. More correct spectral types for a few stars were defined. On the basis of the comparison of the combined energy distributions in the wavelength 2200-4800 Å with the theoretical models the effective temperatures of stars are determined.

ЛИТЕРАТУРА

- 1. Г. А. Гурзадян, Дж. Б. Оганесян, С. С. Рустамбекова, Р. А. Епремян, Каталог ультрафиолетовых спектров 900 слабых звезд, Ереван, Изд-во АН АрмССР, 1985.
- 2. U. Sjogren, Arkiv for Astronomi, 21, Band 3. 339, 1964. 3. К. J. Аллен, Астрофизические величины, М., Мир, 1977.
- 4. R. L. Kuracz, Ap. J. Suppl. Ser., 40, 1, 1979. 5. Г. А. Гурзадян, Р. А. Епремян, Дж. Б. Оганесян, С. С. Рустамбекова, Астрофи-зика, 18, 398, 1982.
- 6. Спектрофотометрия ярких звезд (под ред. И. Н. Глушневой), М., Наука, 1982. 7. В. И. Ворошилов, Н. Б. Каландадзе, В. И. Кузнецов, Бюллетень Абастуман-ской обс., 43, 67, 1972.
 - 8. Nandy K., G. T. Thomson, C. Jamar, A. Monfils, R. Wilson, Astron. Ap., 44 195, 1975.
 - 9. C.-C. Wu, T. B. Ake, A. Boggess, R. C. Bohlin, C. L. Imhoff, A. V. Holm Z. G. Levay, R. J. Panek, F. H. Schiffer, B. E. Turnrose, The IUE Ultraviole Spectral Atlas, NASA IUE Newsletter 22, 1983.
- 10. G. T. Thomson, K. Nandy, C. Jamar, A. Monfils, L. Houziaux, D. J. Carnochan R. Wilson, Catalogue of Stallar Ultraviolet Fluxes, Science Research Council, 1978.
- 11. R. Faraggiana, M. L. Malagnini, Astron. Ap., 137, 149, 1984.
- 12. V. M. Blanco, S. Demers, G. G. Douglass, M. P. Fitzgerald, Publ. U. S. Naval Obs., second ser., p. 21, 1968.
- 13. J. Koornneef, M. R. Meade, P. R. Wesselius, A. D. Code and R. J. van Duinen. Astron. Astrophys. Suppl. Snr. 47, 341, 1982.

- 14. С. С. Рустамбекова, Астрофизика, 16, 457. 1980. 15. С. С. Рустамбекова, Астрофизика, 19, 533, 1983. 16. G. A. Gurzadyan, S. S. Rustambekova, Ap. Space Sci., 69, 269, 1980.
- 17. J. Canto, L. F. Ronriguez, N. Calvet, R. M. Levreault, Ap. J., 282, 631, 1984.