н. л. ИВАНОВА, М. Б. БАБАЕВ, А. А. ГУСЕЙНЗАДЕ, Е. Б. ЗВЕРЕВА СПЕКТР Р ЛЕБЕДЯ

Настоящая работа посвящена исследованию спектров уникального сверхгиганта Р Лебедя.

Большинство звезд группы Р Лебедя классифицировано как поздние В или ранние А, в то время как спектральный тип самой Р Лебедя относится к ВІр (или ВІqk) с некоторыми признаками более поздних типов [1]. Кроме того, по целому ряду свойств Р Лебедя отличается от других сверхгигантов класса ВІ: светимость этой звезды выше [2,3]. темп потери массы более быстрый [3], а процесс истечения материи из Р Лебедя совершенно не похож на истечение из других звезд ранних спектральных классов [4].

Несмотря на множество исследований, проблема Р Лебедя далека от разрешения и поэтому новые результаты по-прежнему представляют интерес.

В настоящей статье приведены результаты исследования распределения энергии в непрерывном спектре, спектрофотометрии линий (эквивалентные ширины, профили), измерений длин волн и лучевых скоростей Р Лебедя.

1. Распределение энергии в непрерывном спектре

Исследование непрерывного спектра произведено по 25 спектрам, полученным на телескопах 10" АСИ-5 Бюраканской обсерватории и АСТ—452 с 35° объективной призмой Шемахинской обсерватории. Наблюдения относятся к 1964, 1965, 1969 и 1976 гг. Изучалась спектральная область 3100—6500 А с дисперсиями 135 А/мм и 97 А/мм у Р_в.

Измерения спектрограмм выполнены на микрофотометре Цейсса и трехканальном микрофотометре с увеличениями в 10 и 50 раз.

В качестве фотоматериала использованы пластинки ZU-2, WP-1 и Kodak OaO и OaF.

Для получения относительного распределения энергии в качестве звезд сравнения использовались звезды типа АО & и b^a Лебедя.

Для исправления за межзвездное поглощение использовались значения A_λ, полученные в результате специального исследования звезд области 2×2° вокруг Р Лебедя с модулями расстояния, предположительно близкими к модулю Р Лебедя [5].

Абсолютное распределение энергии в непрерывном спектре Р Лебедя мы получили, используя среднее распределение энергии в абсолютных единицах для звезд типа АО из работы [6].

На рис. 1 приведено сглаженное для области бальмеровского окачка абсолютное распределение энергии в Р Лебедя. Для сравнения на этом рисунке приведено распределение энергии в звездах × Ориона, спектральный класс ВО51 [6] и ү Кассиопеи [7]. Интенсивность в $\lambda = 4480$ А принята за единицу.

Во всей исследуемой спектральной области температура Р Лебедя ниже температуры × Ориона. В области 4500—6500 А распределение энергии в Р Лебедя сходно с распределением в звезде ВО у Кассиопеи,

обнаруживающей, как известно [7], по сравнению с другими ранними В-звездами заметное покраснение.

Рис. 1. Абсолютное распределение энергии в непрерывном спектре Р Лебедя

2. Спектрофотометрия линий

Для исследования линейчатого спектра использовались пять спектрограмм, полученных в 1971—1972 гг. в фокусе куде двухметрового телескопа Шемахинской обсерватории с дисперсией 4 А/мм. Даты наблюдений и данные об использованном фотоматериале приведены в табл. 1.

Таблина 1

Номер пластинки	Дата	Фотомате- рнал		
1	15. VII. 1971	Kodak OaO		
2	16. VII. 1971	A500		
3	24. VII. 1971	Λ500		
4	9. VIII. 1971	A-500		
5	10. VIII. 1972	A-500		

Записи спектров сделаны на фотоэлектрическом микрофотометре «Лирифо», шкала регистрограмм—0.1 А/мм.

На спектрограммах присутствуют линии элементов: H, Hel, CII, NII, NIII, OI, OII, MgII, SiII, SiIII, SiIV, CaII, FellI и другие более слабые линии. Все линии—сложной структуры. Линии водорода состоят из трех или четырех компонент: почти несмещенных эмиссионных линий и нескольких смещенных в коротковолновую часть линий поглощения. Линии водорода прослеживаются в эмиссии до H₁₉—H₂₄, а в поглощении—до H₂₃—H₂₆.

При определениях эквивалентных ширин возникает неточность вследствие взаимных искажений эмиссий и поглощений. Для введения

соответствующих поправок строились вероятные контуры эмиссий в предположении их симметричности (дополнения к эмиссии обозначены пунктиром на рис. 2). Этот метод был применен ранее в работах [8—10].

В табл. 2 и 3 приведены исправленные значения эквивалентных ширин водорода и гелия (W' — относится к абсорбции, W' — к эмиссии).

Эквивалентные ширины всех линий меняются со временем в пределах, не превышающих ошибки измерений. На рис. 2 иллюстрированы изменения со временем линий Нт и 4026 HeI. По-видимому, в эпохи 1,2 и 5 усилились как эмиссия, так и поглощение, а в эпоху 3 произошло ослабление линий: уменьшилась эмиссия в водородных линиях, линиях гелия и в линиях 3995 NII, 3806 SiIII, 4430 FeIII. Наблюдавшиеся в эпохи 1,2 и 5 линии 3727 OII, 3791 SiIII, 3867 HeI, 4114 OII, 4481 MgII совершенно исчезли.

Рис. 2. Профили H, и 1026 HeI, относящиеся к моментам наблюдений II и III

Линия 3934 Call, состоящая из межзвездной и звездной компонент (рис. 3), также показывает в момент наблюдений 5 небольшую эмиссию звездного происхождения. По эквивалентной ширине звездной компоненты кальция, равной в среднем 0.30 A, с помощью выведенного Билсом и Оуком [11] соотношения

6-804

г=34.8 K.

где г-расстояние в парсеках. К-эквивалентная ширина межзвездной линии кальция в км/с, получаем для расстояния Р Лебедя значение 0.9 кпс.

	5				
Линия	U ¹ * W _a W _e	$\frac{2}{W_a W'_e}$	$\frac{3}{W'_a W'_e}$	Wa We	Wa We
HITTING HEI	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.03 - \\ 0.06 - \\ 0.11 \\ 0.09 \\ 0.15 \\ 0.14 \\ 0.17 \\ 0.51 \\ 0.25 \\ 0.33 \\ 0.15 \\ 0.42 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.51 \\ 0.33 \\ 0.15 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.15 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.33 \\ 0.64 \\ 0.28 \\ 0.51 \\ 0.45 \\ 0.83 \\ 0.52 \\ 0.83 \\ 0.52 \\ 0.83 \\ 0.52 \\ 0.83 \\ 0.52 \\ 0.83 \\ 0.52 \\ 0.83 \\ 0.52 \\ 0.83 \\ 0.52 \\ 0.83 \\ 0.45 \\ 0.28 \\ 0.52 \\ 0.83 \\ 0.52 $	0.54 0.38 0.63 0.40 0.58 0.33 0.59 0.50 0.66 0.50 1.10 1.00 1.43 1.82 1.55 2.31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

* Нумсрация 1, 2, 3, 4, 5 в табл. 2, а также и во всех последующих таблицах соответствует датам, приведенным в табл. 1.

Таблица З

1000			1		2	7.	3	1.24	4		5
Переход	Лнния	w'	w'e	W'a	W'e	w'a	W'e	w'a	We	w'a	W'e
2'S—n'P	3965		_	0.65	0.48	0.48	0.40	0.80*	0.50	0.50	1.39
2 ³ P—n ³ S	4713	0.27	0.39	0.96	0.74	0.42	0.52	0.81	1.08	0.86*	1 - 14
	(UII, Fell)	0 51	0.45	0 45+	0 10	0.00		0.00	0.04	0.60	0.04
	4120	0.51	0.45	0.45	0.40	0.20		0.20	0.04	0.09	0.84
	3867	0.15	0.13	0.30	0.09	Сла	REOI	0.12		0.13-	
$2^{3}P - n^{3}D$	4471	1.46	2.16	2.41	1.76	1.19	1.03	1.62	3.84	1-42*	2.33
200	4026	1.80	2.24	1.15	1.04	0.66	0.56	1.31*	1.31	1.45	1.87
	3819	0.74	0.53	1.05*	0.72	0.68	0.63	0.88*	0.66	0.93*	0.59
	3554	0.22	0.13	0.07	_						
	3513	0.07	_		1000				1.00		
2'P	4921			0.72	0.71	0 92	0 78	0 75	0 66	1 00	0.75
	4387	0.74	0.70	0 80	0 47	0.54	0.52	0.57*	0 42	1 95	1 17
2'P-n'D	4143	0 51	0 40	0 35	0.09	0.20	0.30	0 30	0.12	0.52	0.26
	4000	0.21	0.90	0.00	0.00	0.00	0.39	0.02	0.10	0.00	0.00
E 10 1	(011)	0.01	0.20	0.20	0.21	0.10		0.20	0.10	0.21	
	(011)	La	112		1920	-			1.110		
	3920	0.12		Лин	НЯ	Лини	н пет	0.40*		0.15*	
		1100		нсче	зла						

• Линии состоят из двух компонент,

Таблица 2

Рис. 3. Линия К Call в момент наблюдения 5

3. Лучевые скорости

Измерения длин воли производились по записям слектров, полученных на микрофотометре «Лирифо». Этот метод, уже проверенный раннее [12], обеспечивает достаточно хорошую точность (вероятная ошибка p=±2 км/с и позволяет также измерять смещения отдельных компонент линий.

Гелиоцентрические лучевые скорости компонент поглощения представлены в табл. 4 (водород), 5 (гелий) и 6 (остальные элементы).

Лучевые скорости эмиссионных компонент изменяются в небольших пределах около среднего значения —15 км/с, представляющего, по всей вероятности, скорость звезды.

	Vr, KM/C								
Линия	1	2	3	4	5				
$\begin{array}{c} H_{23} \\ H_{22} \\ H_{21} \\ H_{20} \\ H_{19} \\ H_{18} \\ H_{17} \\ H_{16} \\ H_{15} \\ H_{14} \\ H_{13} \\ A_{13} \\ H_{11} \\ H_{11} \\ H_{10} \\ H_{8} + HeI \\ H_{8} + HeI \\ H_{6} + HCaII \\ H_{8} \\ H_{7} \\ H_{8} \\ H_{7} \\ H_{8} \end{array}$	$\begin{array}{r}142 \\ -112 \\ -128 \\ -130 \\ -131 \\ -130 \\ -141 \\ -139 \\ -135 \\ -131 \\ -134 \\ -132 \\ -118 \\ -133 \\ -117 \\ -133 \\ -117 \\ -133 \\ -188 - 219 \\ -123 - 150 - 148 \\ -173 - 230 \\ -146 - 179 - 216 \\ -151 - 221 \end{array}$	$\begin{array}{r} -154\\ -159\\ -153\\ -161\\ -138\\ -148\\ -166\\ -156\\ -163\\ -161-178\\ -160\\ -159\\ -159\\ -150\\ -159\\ -150\\ -163-219\\ 138-168\\ -165-216-176\\ -176-224\\ -160-230\\ \end{array}$	$\begin{array}{r} -157 \\138 \\ -141 \end{array}$ $\begin{array}{r} -165 \\ -144 \\143 \\ -143 \\ -158 \\ -158 \\ -174 \\ -133 \\ -178 \\199 \\178 \\198 \\191 \end{array}$	165 101173 108172 107186 108172 107172 102 144166 167 174196 174206	$\begin{array}{c} -128 & -164 \\ -96 & -154 \\ -123 & -164 \\ -112 & -163 \\ -117 & -164 \\ -109 & -156 \\ -118 & -164 \\ -120 & -159 \\ -121 & -162 \\ -137 & -156 \\ -136 & -159 \\ -125 & -160 \\ -164 \\ -165 \\ -138 & -167 \\ -171 \\ -207 \end{array}$				

Таблица 4

Таблица 5

Vr, КМ/С							
Линия		1	2	3	4	5	
3867 3820 3927 3965 4009 4026 4121 4143 4388 4472 4713 4922	109 111 93 124 105 106 108 128 116	-127—160 —152 —156 —155 —168	$\begin{array}{r} -133 \\ -151 \\ -89 \\ -136 \\ -95 \\ -140 \\ -95 \\ -140 \\ -95 \\ -146 \\ -95 \\ -136 \\ -97 \\ -173 \\ -128 \end{array}$	$\begin{array}{cccc} -& 99 & -148 \\ & -127 \\ -115 & -206 \\ -150 & -151 \\ -109 & -161 \\ -142 \\ -151 \end{array}$	$\begin{array}{c} -103\\ -111\\ -114\\ -13\\ -106\\ -107\\ -108\\ -169\\ -89\\ -89\\ -127\\ -97\\ -167\\ -140\\ \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

Таблица б

-	-		Vr. Kk	r/c				
Линия		1	2	3	4	5		
NII	3956 3995 4447 4601 4607 4614 4621 4630 4643	105 104 88 94 103 78 87 115	$ \begin{array}{c} -133 \\ -141 \\ -92 \\ -114 \\ -105 \\ -109 \\ -13 \\ -96 \\ -113 \end{array} $	90 119 109 145 130 107	$ \begin{array}{c} - & 90 \\ - & 88 \\ - & 83 \\ - & 101 \\ - & 90 \\ - & 99, - & 128 \\ - & 92, - & -& 110 \\ - & 102 \\ - & 102 \\ - & 86 \\ \end{array} $	101 108 102 104 103 108 117 109 129		
OII	3833 4072 4349 4351 4367 4396 4415 4649 4662		70 77 74 50 166 68		60 69 58 69 158 72 61	77 72 148 122 92 86		
MgII	4481	—124	- 95	1. J	-101	-108		
SII11	3806 4254 4553 4568 4575	143 67 86 77 84	179 89 86 88 96	190 90 110 98	76 83 100 79 74	78 103 91 81		
SilV	4089 4 116	40 52	79 53		- 56 - 42	68 75		
Felli	3600 3603 4420 4430	106 91 106 112	-143 -139	—172	—106,—161 —158	-129		
Call	3934	-10, -138	-16, -159	-11, -120	- 11,173	-14, -144		

Трем компонентам поглощения в среднем можно приписать, с вефоятной ошибкой ±5 км/с, скорости —105, —150 и —210 км/с.

По линиям Hel обнаруживаются две компоненты с соответствующими им окоростями —100 и —150 км/с.

Полученные скорости должны несколько отличаться от истинных в связи с искажающим влиянием эмиссии. Соответствующие поправки, из-за сложности структуры компонент поглощения, особенно в случае водорода и гелия, нам получить не удалось.

При построении зависимости лучевых скоростей абсорбционных линии от потенциалов ионизации мы для исключения эффекта «заполнения» абсорбции эмиссией выбрали из табл. 6 линии со слабой эмиссией или без эмиссии. Относительно линий водорода и гелия предполагаем, что в связи с их большими скоростями соответствующие поправки не внесли бы значительного изменения в соотношение лучевая скоростьшотенциал ионизации.

Рис. 4. Зависимость лучевых скоростей линий поглощения от потенциалов иопизации. Для Н и Неl взяты значения Vr наименее искаженных эмиссией самых коротковолновых компонент поглощения. Число измеренных линий приводится в скобках.

На рис. 4 представлена вышеупомянутая зависимость, показывающая, что большим потенциалам ионизации соответствуют меньшие лучевые скорости абсорбционных линий.

4. Обсуждение результатов

Исследование высокодисперсионных спектрограмм Р Лебедя позволило выявить целый ряд деталей в профилях, в частности обнаружить многокомпонентность линий водорода и гелия, двойственность других линий, выделить межзвездную и звездную компоненты CallK.

Применение метода измерения лучевых скоростей непосредственно по записям спектров сделало возможным измерения смещений отдельных деталей линий.

Анализ значений эквивалентных ширин, полученных в работе, показал временные изменения этих величин: так 16 июня 1971 г. и 10 августа 1972 г. эмиссия и поглощение были более сильными, чем в другис даты наблюдений. Возможно причиной этого служили небольшие изменения физических условий в оболочке звезды, так как это не со провождалось заметным изменением лучевых скоростей.

Полученная в работе зависимость лучевых скоростей лиций погло щения от потенциалов ионизации подтверждает предположение [1] стратификации в оболочке Р Лебедя: линии с большими потенциалами ионизации образуются глубже, чем линии с малыми потенциалами, истекающая с поверхности материя движется с ускорением паружу.

Следует заметить, что дублет Si IV 4068 и 4116. образующийся близко к звездной фотосфере, показывает скорость до —80 км/с, что подтверждает высказанное в работе [4] предположение о существовании «протяженной фотосферы» и наличии значительного ускорения материи ниже слоя с оптической глубиной с=1.

Сделанная в работе попытка измерить расстояние до Р Лебедя по эквивалентной ширине линии CallK не претендует на большую точность. Тем не менее, полученное нами значение г, равное 0.9 кпс, не пыходит за пределы 0.6—1.8 кпс, принятых для Р Лебедя в настоящее время.

Распределение энергии в испрерывном спектре Р Лебедя, исправленное по мере возможности за межзвездное поглощение, свидетельствуст о болес низкой температуре у Р Лебедя, чем у других звезд спектрального класса ВІ, что лишний раз подтверждает сделанные ранес высказывания [1, 13] о существовании у Р Лебедя протяженной атмосферы.

Ն. Լ. ԻՎԱՆՈՎԱ, Մ. Բ. ԲԱԲԱԵՎ, Ա. Հ. ՀՈՒՍԵՑՆԶԱԳԵ, Ե. Բ. ԶՎԵՐԵՎԱ

P ԿԱՐԱՊԻ ԱՍՏՂԻ ՍՊԵԿՏՐԸ

Ամփոփում

Բերված են P Կարապի աստղի սպեկտրում էներգիայի բաշխման ուսումնասիրության, դծերի սպեկտրալուսաչափության (համարժեք լայնություններ, ուրվագծեր) և տեսագծային արագությունների չափման արդյունըները։

N. L. IVANOVA, M. B. BABAEV, A. A. GUSEINSADE. E. B. ZVEREVA

THE SPECTRUM OF THE P Cyg

Summary

The results of investigation of energy distribution in the continuum, the measurements of radial velocities and line profiles in the spectrum of P Cyg are given.

ЛИТЕРАТУРА

O. Strave, Ap. J. 81, 66, 1935.
 И. М. Копылов, Изв. КрАО 20, 156, 1958.
 J. B. Hulchings, Ap. J. 203, 438, 1976.

спектр р лебедя

- М. В. А. Амбарцумян, Л. В. Мирзоян, Т. П. Сноу, Астрофизика 14, 425, 1978.
- 5. Л. Лууд, Публ. Тартусской астрофиз. обс. 35, № 2, 189, 1966.
- 36. В. М. Терещенко, А. В. Харитонов, Зональные спектрофотометрические стандарты, Изд-во «Наука» КазССР, 1972.
- V. N. L. Ivanova, J. D. Kupo and A. Ch. Mamatkazina, Non-Periodic Phenomena in variable stars, JAU Colloquium, Budapest, 1968.
- 18. R. A. Chobros, Z. Ap. 56, 113, 1962.
- 9. De Groot M., Bull. of the Astr. Inst. of the Netherlands 20, 225, 1969.
- 10. Л. Лууд, О. Голландский, Т. Ярыгини, Публ. Тартусской истрофиз. обс. 43, 250, 1975.
- 11. C. S. Beals, J. B. Oke, MN 113, 530, 1953.
- 12. Н. Л. Иванова, А. Н. Хотнянский, Сообщ. Бюраканской обс., 50, 33, 1978.
- 13. D. Chalonge, L. Divan, Ann. d. Astr. 15, 201, 1952.