ФОТОМЕТРИЧЕСКИЕ И СПЕКТРАЛЬНЫЕ НАБЛЮДЕНИЯ СІ ЛЕБЕДЯ

СІ Лебедя-одна из известных симбиотических звезд. Считается что объект состоит из холодного гиганта МБШ [1] или М6Ш [2] и горячей звезды низкой светимости, окруженных плотной газовой туманностью. В спектре СІ Лебедя присутствуют характерные для звезд

этого типа эмиссионные линии высокого возбуждения [3].

С 1890 г. у СІ Лебедя наблюдалось пять интенсивных вспышен горячего компонента, продолжительностью около 200 дней [3-7]. Три из них пришлись на последнее десятилетие (1971, 1973, 1975 гг.). Фотографические наблюдения вне вспышек показали периодические изменения блеска с периодом 855 дней и с амплитудой около 1 [3].

Пучинкас [8] предположил, что эти изменения блеска связаны с затмением в двойной системе. В 1975 г. Белякина [2] отнаблюдала изменения блеска, явно свидетельствующие о затмении горячего компонента. По-видимому, затмение четко наблюдается только во время

СІ Лебеля является единственной симбиотической звездой, у которой наблюдается затмение. Поэтому детальное исследование этой

системы представляет большой интерес.

Настоящая работа содержит результаты фотометрических и спектральных наблюдений этой звезды.

1. Фотометрические наблюдения

Наблюдения СІ Лебедя в спектральных полосах R, I ведутся в АО ЛГУ на телескопе с днаметром 60 см с октября 1973 г. В 1976 и 1978 гг. по нашей просьбе были сделаны оценки блеска в полосах U, В, V на телескопе АЗТ-14 АО ЛГУ. На рис. 1 приведены кривые блеска СІ Лебедя за 1974—1978 гг., построенные по результатам наших наблюдений, а также данных Темпести [7] и Белякиной [2] в цвете V. Фазы на рис. 1 вычислены по элементам Уитни [3]: J.D=241 1902+

По результатам многоцветной фотометрии можно попытаться получить характеристики компонентов системы. Предварительно необходимо наблюдаемые величины исправить за межзвездное поглощение, составляющее, согласно Боярчуку [1], $A_v=1^m$ 2. Для получения величины межзвездного поглощения в других спектральных полосах принималась зависимость $A(\lambda)$ для Лебедя [9]. Потоки в полосах были вычислены с использованием абсолютной калибровки Джонсона [10]. Полученные распределения энергии для разных состояний звезды (вспышка, спокойное состояние, затмение) представлены на рис. 2 сплошными линиями.

Предполагая, что за время, прошедшее от максимума блеска до полной фазы затмения, суммарное излучение холодного компонента и туманности существенно не изменилось, можно получить распределение энергии горячего компонента во вспышке (пунктирная линия 4 на рис. 2). Это распределение соответствует распределению эпергии в излучении звезды раннего спектрального класса (В7—А3) [9].

Рис. 1. Кривые блеска СІ Лебедя.

Рис. 2. Распределение энергии в излучении СІ Лебедя: 1—излучение звезды во время вспышки; 2—суммарное излучение системы вне вспышки (J.D 2443660—2443890, 1978 г.); 3—излучение холодного компонента и туманности (затмение); 4—излучение горячего компонента во время вспышки; 5—излучение звезды МбШ.

Рассмотрим затмение горячего компонента, когда наблюдает только суммарное излучение холодного гиганта и туманности. Прен брегая вкладом излучения туманности в полосу 1, получим, что более коротких длинах волк присутствует дополнительное излучени которое можно объяснить излучением туманности. Распределени энергии в излучении звезды МбШ [11], нормированное к потоку

полосе 1, приведено на рис. 2.

В предположении, что поток в полосе 1 равен потоку от звезд М6Ш, вклад излучения холодного компонента в полосу составля 28%. Звездная величина горячего компонента во вспышке в полос V на 2^m 4 меньше звездной величины суммарного излучения холодн го гиганта и туманности. Тогда, принимая для М6Ш $M_v = -0.5$ [11] учитывая вклад холодного компонента в полосу V, получим для гор чего компонента во вспышке нижнюю границу абсолютной величин

Вне вспышки блеск звезды в полосах R, I меняется мало, поэто му нет оснований для предположения о переменности холодного ком

2. Спектральные наблюдения

Спектры СІ Лебедя были получены на ЗТА 2.6 м Бюраканско обсерватории с оптическим многоканальным анализатором Институ та астрофизики и физики атмосфер АН Эстонской ССР (дисперси 50 А/мм) и на телескопе МТМ-200 АО ЛГУ с объективной призмо (дисперсия 250 А/мм у Нт) в июне и августе 1978 г. Даты наблюдо ний, юлианские дни и использованный фотоматериал приведены табл. 1. Записи спектров сделаны на мпкрофотометре Цейсса с увели чением в 100 раз.

Для описания распределения энергии в непрерывном спектре С Лебедя в области 3700-5000 А были вычислены абсолютные спектро

фотометрические градненты.

	с градион-			Габлица
ηπ ΠΠ	Дата (1978 г.)	J.D. 2440000÷	Фото- матернал	Ф1
1 2	1/2. VI 3/4. VI	3661 3663	Kodak 11a0 Kodak 11a0	1.83
2 3 4 5	6/7. III 9/10.VI	36 66 - 36 69	A-600 A-600	2·15 1·80
6	9/10.VI 10/11.VI	3669 3670	A600 A600	1·78 2·48
7 8 9	10/11.VI 12/13.VI 13/14.VIII	3670 3672 3734	Кодак 11a0 А—600 Запись с ОМА	2·53 2·50

Они были определены привязкой к двум близко расположенным к СІ Лебедя звездам: BD +35° 3831 и BD +35° 3815. Первая из инх была классифицирована нами как В9, вторая-как АО. Для определения межзвездного поглощения звезды BD +35° 3831 были использованы U, B, V измерения этих звезд, произведенные, по нашей просьбе, на АЗТ-14 АО ЛГУ Т. А. Поляковой. Межзвездное поглощение А, для BD +35° 3831 оказалось равным 0° 7. Наблюдения с объективной призмой показали, что обе звезды сравнения имеют одинаковое распределение энергии в непрерывном спектре. Абсолютные спектрофотометрические градиенты, вычисленные привязкой к этим звездам, приведены в табл. 2. При этом градиент для звезд типа АО в соответствии с [12] был принят равным единице.

					Таблица 2
А в А	Элемент	I/I _{Ha}	λвА	Элемент	I/IH ₃
6678	Hel	0.002	4490	Fell	0.06
6562	Ha	3.08	4489	Fell	0.01
5017	Fell	0.19	4471	Hel	0.23
5008	101111	0-26	4417	Fell	0.06
4959	0111	0-07	4388	Hel	0.11
4924	Fell	0.06	4363	[0111]	0.30
4861	Нз	1.00	4340	H _T	0.45
4713	Hel	0.16	4179	Fell	0.03
4686	Hell	0.43	4173	Fell	0.03
4658	Felli	0-01	4144	Hel	()-10
4650	CIII	0.02	4121	Hel	0.11
4640	NIII	0.27	4102	Ho	0.43
4634	Pell	0.09	4072	[FeV]	0.08
4620	Fell		4026	Hel	0.11
4576	Fell	0.05	4009	Hel	0.05
4549	Fell	0.03	3970	He	0,29
4515	Fell	0-05	3889	HE	0-17
4508	Fell	0-04	3869	NellI	0.22
4501	Till	0.02	3835	Hz	0.04

На рис. 3 представлено относительное распределение энергии в СІ Лебедя, не исправленное за дифференциальное межзвездное поглощение, так как в данном случае нас интересует относительное изменение в течение периода наблюдений.

Рис. 3. Относительное распределение энергии в CI Лебедя (нумерация в соответствии с табл. 1).

Суммарному свечению холодного, горячего компонентов и туманности соответствуют, согласно [12], спектрофотометрические температуры не ниже, чем температуры звезд спектрального класса F2—GO. Показатель цвета В—V системы, измеренный в период наших наблюдений, оказался равным +0 5, что согласуется с указанными выше спектральными классами.

Бальмеровский скачок $D = \lg \frac{I_{3847-}}{I_{3847-}}$ равен примерно -0.5.

Как видно из рис. 3. распределение энергии в непрерывном спектре СІ Лебедя в рассматриваемом промежутке времени претерпело некоторые изменения.

Линейчатый спектр СІ Лебедя, наряду с полосами поглощения ТіО, содержит как разрешенные, так и запрещенные эмиссионные ли-

нин.

Относительные интенсивности эмиссионных линий (I н₅ = 1), полученные из наблюдений на ЗТА 2.6 м с ОМА, приведены в табл. 3. Поправки на межзвездное поглощение введены по данным работ [1, 9]. Из табл. 3 видно, что отношение интенсивностей запрещенных ли-

ний $\frac{I_{4363}}{I_{5008}+I_{4959}}$ — порядка единицы. Принимая, согласно [13], для

электронной температуры туманности СІ Лебедя 17000°, находим по

стандартной методике [14] значение lgn, равное 7.2.

В табл. 4 приводятся средние значения Бальмеровского декремента, измеренные, соответственно, по пяти спектрам, полученным с объективной призмой МТМ-200 и по спектру с ОМА на ЗТА.

V 1					Таблица З		
Линия	Нз	H ₇ .	Нĕ	H	Нт	Ητ	Телескоп
Бальмеровский декремент	1-00	0·39 0·45	0·37 0·43	0·26 0·29	0·15 0,17	0-04	MTM 200 3TA

3. Заключение

Наблюдавшаяся в 1975 г. вспышка СІ Лебедя и последовавшее за ней затмение позволнли получить некоторую новую информацию об этой звезде.

Согласно нашим данным оказалось, что горячий компонент во

вспышечном состоянии имеет высокую светимость: $M_v = -4^m 3$.

Распределение энергии в суммарном свечении холодного гиганта и туманности, наблюдаемое во время затмения, показывает, при сравнении с результатами Боярчука [1], некоторый голубой избыток.

За время наблюдений, исключая вспышки 1973 и 1975 гг., блеск звезды в полосах R и I изменялся мало, а поскольку излучение в этих полосах определяется, в основном, холодным гигантом, можно предположить, что блеск холодного компонента не показывает переменности.

Спектрофотометрические градиенты в течение периода относительно спокойного состояния СІ Лебедя претерпевали небольшие изменения.

Величина Бальмеровского скачка D, равная -0.5, и Бальмеров-

ский декремент туманности близки к значениям, характерным для

планетарных туманностей [15].

Авторы выражают благодарность заведующему ЗТА 2.6 м Бюраканской обсерватории А. Амирханяну за предоставление дополнительного наблюдательного материала.

5 мая 1979 г.

և լ. Իվսենվև, Տ. ե. Խորգցևկովս.

Сլ ԿԱՐԱՊԻ ԼՈՒՍԱՉԱՓԱԿԱՆ ԵՎ ՍՊԵԿՏՐԱԼ ԴԻՏՈՒՄՆԵՐ

Ամփոփում

Բերված են CI Կարապի սիմբիոտիկ աստղի լուսաչափական և սպեկտրալ ուսումնասիրության արդյունքները։ Դիտողական նյութը ստացված է Բյուրականի աստղադիտարանի 2,6 մ և Լենինգրադի համալսարանի աստղադիտարանի MTM-200 և A3T-14 դիտակներով։

CI Կարապի աստղի 1975 թ. բռնկման և նրան Տաջորդած խավարման դիտումները Տնարավորություն են տվել ստանալ նոր տեղեկություններ այդ աստղի մասին։

N. L. IVANOVA, T. N. KHUDYAKOVA

PHOTOMETRIC AND SPECTRAL OBSERVATIONS OF CI CYGNI

Summary

The results of photometric and spectral investigations of the symbiotic star CI Cyg are given. The observational material is obtained with the 2.6-meter telescope of the Byurakan Observatory and with the MTM -200 and AZT-14 telescopes of Leningrad University Observatory.

In 1975 an outburst and the eclipse of CI Cygni are observed and some new information about this star are obtained.

ЛИТЕРАТУРА

- 1. А. А. Боярчук, Изв. КрАО, 39, 124, 1969.
- 2. Т. С. Белякина, Изв. КрАО, 59, 133, 1979.
- 3. L. H. Aller, Publ. Dominion Astrophys. Obs. 9, 343, 1954.
- 4. A. Cannon, Harv. O. B. N 778: 1922.
- 5. М. И. Мялковский, ПЗ приложение, 3, № 14, 71, 1977.
- 6. Т. С. Белякина, IBVS N 1169, 1975.
- 7. P. Tempesti, IBVS N 1094, 1976.
- 8. А. Пучинкас, Бюлл. Вильнюсской АО, № 33, 50, 1972.
- 9. В. Страйжис, Многоцветная фотометрия звезд, Вильнюс, 1977.
- 10. H. L. Johnson, Con. LPL 3, N 53, 73, 1965.
- 11. 7. Lee, Ap. J. 162, N 1. 217, 1970.
- 12. D. Barbler et D. Chalonge, Ann. d'Astrophys. 3. N 2, 1940.
- 13. А. А. Боярчук, АЖ, 43, 976, 1966; АЖ, 44, 12, 1967.
- А. А. Боярчук, Р. Е. Гершберг, Н. В. Годовников, В. И. Проник, Изв. КрАО, 39, 147, 1969.
- 15. Г. А. Гурзадян, Планетарные туманности М., Изд. физ.-мат. наук, 1962.