н. л. иванова. т. н. худякова

ФОТОМЕТРИЧЕСКИЕ И СПЕКТРАЛЬНЫЕ НАБЛЮДЕНИЯ СІ ЛЕБЕДЯ

СІ Лебедя—одна из известных симбиотических звезд. Считается, что объект состоит из холодного гиганта М5Ш [1] или М6Ш [2] и горячей звезды низкой светимости, окруженных плотной газовой туманностью. В спектре СІ Лебедя присутствуют характерные для звезд этого типа эмиссионные линии высокого возбуждения [3].

С 1890 г. у СІ Лебедя наблюдалось пять интенсивных вспышек горячего компонента, продолжительностью около 200 дней [3—7]. Три из них пришлись на последнее десятилетие (1971, 1973, 1975 гг.). Фотографические наблюдения вне вспышек показали периодические изменения блеска с периодом 855 дней и с амплитудой около 1 [3].

Пучинкас [8] предположил, что эти изменения блеска связаны с затмением в двойной системе. В 1975 г. Белякина [2] отнаблюдала изменения блеска, явно свидетельствующие о затмении горячего компонента. По-видимому, затмение четко наблюдается только во время его вспышек.

СІ Лебедя является единственной симбиотической звездой, у которой наблюдается затмение. Поэтому детальное исследование этой системы представляет большой интерес.

Настоящая работа содержит результаты фотометрических и спектральных наблюдений этой звезды.

1. Фотометрические наблюдения

Наблюдения СІ Лебедя в спектральных полосах R, I ведутся в АО ЛГУ на телескопе с днаметром 60 см с октября 1973 г. В 1976 и 1978 гг. по нашей просьбе были сделаны оценки блеска в полосах U, B, V на телескопе АЗТ-14 АО ЛГУ. На рис. 1 приведены кривые блеска СІ Лебедя за 1974—1978 гг., построенные по результатам наших наблюдений, а также данных Темпести [7] и Белякиной [2] в цвете V. Фазы на рис. 1 вычислены по элементам Уитни [3]: J.D=241 1902+ 855 § 25.

По результатам многоцветной фотометрии можно попытаться получить характеристики компонентов системы. Предварительно необходимо наблюдаемые величины исправить за межзвездное поглощение, составляющее, согласно Боярчуку [1], $A_v = 1^m 2$. Для получения величины межзвездного поглощения в других спектральных полосах принималась зависимость $A(\lambda)$ для Лебедя [9]. Потоки в полосах были вычислены с использованием абсолютной калибровки Джонсона [10]. Полученные распределения энергии для разных состояний звезды (вспышка, спокойное состояние, затмение) представлены на рис. 2 сплошными линиями.

Предполагая, что за время, прошедшее от максимума блеска до полной фазы затмения, суммарное излучение холодного компонен-

фотометрические и спектральные наблюдения сі лебедя 53

та н туманности существенно не изменилось, можно получить распределение энергии горячего компонента во вспышке (пунктирная линия 4 на рис. 2). Это распределение соответствует распределению эпергии в излучении звезды раннего спектрального класса (В7—А3) [9].

Рис. 2. Распределение энергии в излучении СІ Лебедя: 1—излучение звезды во время вспышки; 2—суммарное излучение системы вне вспышки (J.D 2443660— 2443890, 1978 г.); 3—излучение холодного компонента и туманности (затмение); 4 излучение горячего компонента во время вспышки; 5—излучение звезды МбШ. Рассмотрим затмение горячего компонента, когда наблюдает только суммарное излучение холодного гиганта и туманности. Прен брегая вкладом излучения туманности в полосу I, получим, что более коротких длинах волн присутствует дополнительное излучени которое можно объяснить излучением туманности. Распределени энергии в излучении звезды МбШ [11], нормированное к потоку полосе I, приведено на рис. 2.

В предположении, что поток в полосе 1 равен потоку от звезд М6Ш, вклад излучения холодного компонента в полосу составляя 28%. Звездная величина горячего компонента во вспышке в полос V на 2^m 4 меньше звездной величины суммарного излучения холодно го гиганта и туманности. Тогда, принимая для М6Ш $M_{\star} = -0.5$ [11] учитывая вклад холодного компонента в полосу V, получим для гора чего компонента во вспышке нижнюю границу абсолютной величина $M_{\star} = -4.3$.

Вне вспышки блеск звезды в полосах R, I меняется мало, поэто му нет оснований для предположения о переменности холодного ком понента.

2. Спектральные наблюдения

Спектры СІ Лебедя были получены на ЗТА 2.6 м Бюраканско обсерватории с оптическим многоканальным анализатором Институ та астрофизики и физики атмосфер АН Эстонской ССР (дисперси 50 А/мм) и на телескопе МТМ-200 АО ЛГУ с объективной призмо (дисперсия 250 А/мм у H_{γ}) в июне и августе 1978 г. Даты наблюде ний, юлианские дни и использованный фотоматериал приведены табл. 1. Записи спектров сделаны на мпкрофотометре Цейсса с увели чением в 100 раз.

Для описания распределения энергии в непрерывном спектре С Лебедя в области 3700—5000 А были вычислены абсолютные спектро фотометрические градненты.

Таблица 1

№ пп	Дата (1978 г.)	J.D. 2410000+	Фото- матернал	ф1
1 2 3 4 5 6 7 8 9	1/2. VI 3/4. VI 6/7. III 9/10.VI 9/10.VI 10/11.VI 10/11.VI 12/13.VI 13/14.VIII	3661 3663 3669 3669 3670 3670 3670 3672 3734	Коdаж 11a0 Коdаж 11a0 А600 А600 А600 Коdак 11a0 А600 Запись с ОМА	1.83 2.05 2.15 1.80 1.78 2.48 2.53 2.50

Они были определены привязкой к двум близко расположенным к СІ Лебедя звездам: BD +35° 3831 и BD +35° 3815. Первая из них была классифицирована нами как B9, вторая—как АО. Для определения межзвездного поглощения звезды BD +35° 3831 были использованы U, B, V измерения этих звезд, произведенные, по нашей просьбе, на АЗТ-14 АО ЛГУ Т. А. Поляковой. Межзвездное поглощение А, для BD +35° 3831 оказалось равным 0^m. 7. Наблюдения с объективной призмой показали, что обе звезды сравнения имеют одинаковое распределение энергии в непрерывном спектре. Абсолютные спектрофотометрические градиенты, вычисленные привязкой к этим звездам, приведены в табл. 2. При этом градиент для звезд типа АО в соответствии с [12] был принят равным единице.

	тиолици и				
л в А	Элемент	I/IHa	λвА	Элемент	I/IH ₃
6678 6562 5017 5008 4959 4924 4861 4713 4686 4658 4658 4658 4650 4640 4634	Hel Ha Fell [OIII] Fell Ha Hel Fell Cili NIII Fell Pell	0.002 3.08 0.19 0.26 0.07 0.06 1.00 0.16 0.43 0.01 0.02 0.27 0.09	4490 4489 4471 4417 4388 4363 4340 4179 4173 4144 4121 4102 4072 4072	Fell Fell Fell Fell Fell Fell Fell Fell	0.06 0.01 0.23 0.06 0.11 0.30 0.45 0.03 0.03 0.03 0.10 0.11 0.43 0.08 0.08
4620 4576 4549 4515 4508 4501	Fell Fell Fell Fell Till	0.05 0.03 0.05 0.04 0.02	4020 4009 3970 3889 3869 3835	Hel Hel Ha Nelli H _T	0.05 0,29 0.17 0,22 0.04

На рис. 3 представлено относительное распределение энергии в СІ Лебедя, не исправленное за дифференциальное межзвездное поглощение, так как в данном случае нас интересует относительное изменение в течение периода наблюдений.

Рис. 3. Относительное распределение энергии в СІ Лебедя (нумерация в соответствии с табл. 1).

55

Суммарному свечению холодного, горячего компонентов и туманности соответствуют, согласно [12], спектрофотометрические температуры не ниже, чем температуры звезд спектрального класса F2—GO. Показатель цвета В—V системы, измеренный в период наших наблюдений, оказался равным + 0^m 5, что согласуется с указанными выше спектральными классами.

Бальмеровский скачок $D = \lg \frac{I_{3647-}}{I_{3647+}}$ равен примерно -0.5.

Как видно из рис. 3. распределение энергии в непрерывном спектре СІ Лебедя в рассматриваемом промежутке времени претерпело некоторые изменения.

Линейчатый спектр СІ Лебедя, наряду с полосами поглощения ТіО, содержит как разрешенные, так и запрещенные эмиссионные ли-

Относительные интенсивности эмиссионных линий (I н₅ == 1), полученные из наблюдений на ЗТА 2.6 м с ОМА, приведены в табл. 3. Поправки на межзвездное поглощение введены по данным работ [1, 9]. Из табл. 3 видно, что отношение интенсивностей запрещенных ли-

ний <u>14383</u> — порядка единицы. Принимая, согласно [13], для <u>15008+14959</u>

электронной температуры туманности СІ Лебедя 17000°, находим по стандартной методике [14] значение lgn, равное 7.2.

В табл. 4 приводятся средние значения Бальмеровского декремента, измеренные, соответственно, по пяти спектрам, полученным с объективной призмой МТМ-200 и по спектру с ОМА на ЗТА.

Таблица S

Линия	Нз	H ₇ .	Hõ	Hs	HŢ	Hη	Телескоп
Бальмеровский декремент	1.00	0.39	0.37	0-26 0-29	0.15	0.04	MTM-200 3TA

3. Заключение

Наблюдавшаяся в 1975 г. вспышка СІ Лебедя и последовавшее за ней затмение позволили получить некоторую новую информацию об этой звезде.

Согласно нашим данным оказалось, что горячий компонент во вспышечном состоянии имеет высокую светимость: $M_{y} = -4^{m} 3$.

Распределение энергии в суммарном свечении холодного гиганта и туманности, наблюдаемое во время затмения, показывает, при сравнении с результатами Боярчука [1]. некоторый голубой избыток.

За время наблюдений, исключая вспышки 1973 и 1975 гг., блеск звезды в полосах R и I изменялся мало, а поскольку излучение в этих полосах определяется, в основном, холодным гигантом, можно предположить, что блеск холодного компонента не показывает переменности.

Спектрофотометрические градиенты в течение периода относительно спокойного состояния СІ Лебедя претерпевали небольшие изменения.

Величина Бальмеровского скачка D, равная -0.5, и Бальмеров-

"ФОТОМЕТРИЧЕСКИЕ И СПЕКТРАЛЬНЫЕ НАБЛЮДЕНИЯ СІ ЛЕБЕДЯ 57

ский декремент туманности близки к значениям, характерным для планетарных туманностей [15].

Авторы выражают благодарность заведующему ЗТА 2.6 м Бюраканской обсерватории А. Амирханяну за предоставление дополнительного наблюдательного материала.

5 мая 1979 г.

Ն. Լ. ԻՎԱՆՈՎԱ, Տ. Ն. ԽՈՒԴՑԱԿՈՎԱ

CI ԿԱՐԱՊԻ ԼՈՒՍԱՉԱՓԱԿԱՆ ԵՎ ՍՊԵԿՏՐԱԼ ԴԻՏՈՒՄՆԵՐ

Ամփոփում

Բերված են CI Կարապի սիմբիոտիկ աստղի լուսաչափական և սպեկտրալ ուսումնասիրության արդյունքները։ Դիտողական նյութը ստացված է Բյուրականի աստղադիտարանի 2,6 մ և Լենինդրադի համալսարանի աստղադիտարանի MTM-200 և A3T-14 դիտակներով։

CI Կարապի աստղի 1975 Թ. բռնկման և նրան Տաջորդած խավարման դիտումները ՏնարավորուԹյուն են տվել ստանալ նոր տեղեկուԹյուններ այդ աստղի մասին։

N. L. IVANOVA, T. N. KHUDYAKOVA

PHOTOMETRIC AND SPECTRAL OBSERVATIONS OF CI CYGNI

Summary

The results of photometric and spectral investigations of the symbiotic star CI Cyg are given. The observational material is obtained with the 2.6-meter telescope of the Byurakan Observatory and with the MTM -200 and AZT-14 telescopes of Leningrad University Observatory.

In 1975 an outburst and the eclipse of CI Cygni are observed and some new information about this star are obtained.

ЛИТЕРАТУРА

- 1. А. А. Боярчук, Изв. КрАО, 39, 124, 1969.
- 2. Т. С. Белякина, Изв. КрАО, 59, 133, 1979.
- 3. L. H. Aller, Publ. Dominion Astrophys. Obs. 9, 343. 1954.
- 4. A. Cannon, Harv. O. B. N 778: 1922.
- 5. М. И. Мялковский, ПЗ приложение, 3, № 14, 71, 1977.
- 6. Т. С. Белякина, IBVS N 1169, 1975.
- 7. P. Tempestl, IBVS N 1094, 1976.
- 8. А. Пучинкас, Бюлл. Вильнюсской АО, № 33, 50, 1972.
- 9. В. Страйжис, Многоцветная фотометрия звезд, Вильнюс, 1977.
- 10. H. L. Johnson, Con. LPL 3, N 53, 73, 1965.
- 11. 7. Lee, Ap. J. 162, N 1. 217, 1970.
- 12. D. Barbler et D. Chalonge, Ann. d'Astrophys. 3. N 2, 1940.
- 13. А. А. Боярчук, АЖ, 43, 976, 1966; АЖ, 44, 12, 1967.
- 14. А. А. Боярчук, Р. Е. Гершберг, Н. В. Годовников, В. И. Проник, Изв. КрАО, 39, 147, 1969.
- 15. Г. А. Гурзадян, Планстарные туманности М., Изд. физ.-мат. наук, 1962.