УДК 523.82

Голубые объекты в окрестности М13.1. Оганесян Э. Я. «Сообщения Бюраканской обсерватории», 1978 г., вып. L. стр. 5.

Приведены фотометрические данные в системе UBV для 225 объектов в области размером 16 квадратных градусов, прилегающей к скоплению M13.

Построены «двухцветная днаграмма» и днаграмма «цвет—светимость», на основании которых сделан анализ полученных данных. Половину исследованных объектов
составляют субкарлики. Среди остальных—бело-голубые карлики, обычные звезды
главной последовательности, звезды гало, звезды шарового скопления и объекты,
возможно, имеющие внегалактическую природу. На основе распределения объектов
по яркости и цвету, а также по их видимому распределению можно выделить несколько различных групп.

В результате фотометрического исследования выявлено также несколько переменных звезд.

Таблиц 4, рисунков 6, приложений 2, библиографий 14.

УДК 523.872.

Наблюдения гаммы Кассиопеи. Иванова Н. Л. «Сообщення Бюраканской обсерпатории», 1978 г., вып. L, стр. 22.

В работе даны результаты наблюдений ткасснопен с бесщелевым спектрографом АСИ-5 Бюраканской обсерватории и с 1.5 м телескопом Верхнего Прованса (Франция): распределение энергии в непрерывном спектре в 1956—1970 гг., профили и эквивалентные ширины эмисснопных линий На, Нэ, Нт и 5876 Hel, величины отношения V/R.

Таблиц 4, рисунков 6, библиографий 15.

УЛК 523.872

Спектр . Н D 187399. Иванова Н. Л., Хотнянский А. Н. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 33.

Работа содержит результаты исследования пяти спектров знезды НD 187399, полученных в фокусе куде 2-метрового телескопа Шемахинской обсерватории с дисперсиями 4 и 8 А/мм в спектральной области λλ 3600—4900. Измерены лучевые скорости изучены профили Н, HeI, MgII, SiII, CaII. Установлено, что в двойной системе имеются две оболочки, одна из которых принадлежит главной звезде В9 и имеет среднюю скорость —21 км/сек, вторая, по-видимому, окружает всю систему и расширяется со средней скоростью—90 км/сек. В водородных линиях обнаружен компонент,

имеющий переменную скорость и принадлежащий, возможно, «невидимой» звезде системы.

Таблиц 5. рисунков 4. библиографий 5.

удк 523.841

Поляриметрические и фотометрические наблюдения звезд EV Lac и AD Leo во время вспышки. Ерицян М. А. «Сообщения Бюраканской обсерватории», 1978 г., вып. L. стр. 40.

В настоящей работе приведены результаты поляриметрических и фотометрических наблюдений вспыхивающих звезд EV Lac и AD Leo. За 89,5 часа наблюдения было зарегистрировано 7 вспышек, сводка наблюдений и кривые блеска которых приведены в таблице и на рисунках.

Результаты поляриметрических наблюдений во время вспышки не отличались от результатов поляризвции в спокойном состоянии этих звезд и находились в предслах ощибки измерения ($\sigma_p = \pm 0.4 \pm 0.6\%$, $\sigma_0 = \pm 5 \pm 10^\circ$).

Таблица 1, рисунков 2, библиографий 5.

УЛК 523.164

Об одном интересном случае ионосферного мерцания неизвестного радиоисточника. Санамян В. А. «Сообщения Бюраканской обсерватории» 1978 г., вып. L, стр. 45.

Приводятся данные поносферного мерцания неизвестного радиоисточника, находящегося в направлении звездного скопления Плеяды. Сигнал регистрировался на частоте 327 Мгц с помощью Индийского радиотелескопа.

Рисунок 1, библиографий 3.

УДК 523.105

Наблюдения свечения ночного неба в Бюракане. Абраамян Г. В., Ахасрдян Л. Г. «Сообщення Бюраканской обсерватории», 1978 г., вып. L, стр. 50.

В работе приведены результаты наблюдений ночного неба Бюраканской астрофизической обсерватории в U, B, V полосах.

Таблица 1, рисунков 3.

УДК 523.855

Поиски цепочкообразных групп галактик на картах Паломарского атласа. Варданян Р. А. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 55.

Приводятся список и карты отождествлений 28 цепочкообразных групп галактик, найденных на картах зон [в]>30° Паломарского атласа.

Таблица 1, рисунков 28, библиографий 10.

УДК 523.035

К решению задач переноса излучения в полубесконечных средах. Мнацаканян М. А. «Сообщения Бюряканской обсерваторин», 1978 г., вып. L, стр. 59.

, Предлагается новая методика решения различных задач о выходящем из полубесконечной среды излучении. Фактически построен математический аппарат, основанный на введении оператора инвариантности G, обладающий физической прозрачностью и, по сути дела, представляющий собой не что иное, как аппарат инвариантности в обычном смысле Амбарцумяна. Даются иллюстрации на примерах почти всех хорошо известных простейших задач теории переноса излучения в полупространстве.

УДК 523.035

Библиографий 12.

Габлицы некоторых функций теории переноси излучения. Андреасян Р. Р. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 79.

Приводятся таблицы функций $F(\tau,\tau)$ и $F(\tau,\xi)$ для разных значений λ . При изотропном монохроматическом рассеянии в однородной среде посредством этих функций элементарно выражается ядро $Z(\tau,\tau,\xi)$ уравнения Фредгольма, связывающего задачи переноса в слое конечной оптической толщины с соответствующими задачами для полубесконечной среды. Функция $Z(\tau,\tau,\xi)$ сама описывает режим излучения в полубесконечной среде, освещенной параллельными лучами. Кроме того, с помощью функций $F(\tau,\tau)$ и $F(\tau,\xi)$ записываются квазнасимптотические решения задач переноса для слоя конечной оптической толщины.

Таблиц 13, библиографий 7.

УДК 522.59

Преобразование частоты вверх как метод детектиропания инфракрасного излучения в астрономии. Мелик-Алавердян Ю. К., Фрадкин А. И. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 95.

Рассмотрен астрономический приемник инфракрасного излучения, основаним на нелинейном преобразовании излучения. Рассчитаны основные параметры этого приемника и сформулированы основные требования к его конструкции.

Таблиц 4, рисунков 4, библиографий 18.

УДК 522.59

Расчет онтимального астрономического преобразователя частоты. Мелик-Алавердян Ю. К., Фрадкин Л. И. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 107.

В работе выполнен расчет эффективности ООЕ преобразования в видимый днапазон инфракрасного излучения в фокусе телескопа. Полученные соотношения позволяют выбрать оптимальную для данного телескопа и имеющегося нелинейного кристалла схему преобразования и рассчитать ожидаемую эффективность преобразования и величину преобразованного сигнала.

Рисунок 1, библиографий 5.

УДК 523. 164

Амплитудный модулятор с двумя выходами. Панаджян В. Г. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 111.

Описывается схема двухканального амплитудного модулятора с двумя симметричными выходами, разработанияя для двухканального модуляционного радиометра Грэхема Бюраканской астрофизической обсерватории.

Рисунок 1, библиография 1,

имеющий переменную скорость и принадлежащий, возможно, «невидимой» звезде системы.

Таблиц 5, рисунков 4. библиографий 5,

УДК 523.841

Поляриметрические и фотометрические наблюдения звезд EV Lac и AD Leo во время вспышки. Ерицян М. А. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 40.

В настоящей работе приведены результаты поляриметрических и фотометрических наблюдений вспыхивающих звезд EV Lac и AD Leo. За 89,5 часа наблюдений было зарегистрировано 7 вспышек, сводка наблюдений и кривые блеска которых приведены в таблице и на рисунках.

Результаты поляриметрических наблюдений во время вспышки не отличались от результатов поляризации в спокойном состоянии этих звезд и находились в пределах ошибки измерения ($\tau_p = \pm 0.4 \div 0.6\%$, $\tau_0 = \pm 5 \div 10^\circ$).

Таблица 1, рисунков 2, библиографии 5.

УДК 523.164

Об одном интересном случае ионосферного мерцания неизвестного радиоисточника. Санамян В. А. «Сообщения Бюраканской обсерватории» 1978 г., вып. L, стр. 45.

Приводятся данные ноносферного мерцания неизвестного радиоисточника, находищегося в направлении звездного скопления Плеяды. Сигнал регистрировался на частоте 327 Мгц с помощью Индийского радиотелескопа.

Рисунок 1, библиографий 3.

УДК 523.105

Наблюдения свечения ночного неба в Бюракане. Абраамян Г. В., Ахосрдян Л. Г. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 50.

В работе приведены результаты наблюдений ночного неба Бюраканской астрофизической обсерватории в U, B, V полосах.

Таблица 1, рисунков 3.

УДК 523.855

Поиски цепочкообразных групп галактик на картах Паломарского атласа. Варданян Р. А. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 55.

Приводятся список и карты отождествлений 28 цепочкообразных групп галактик, найденных на картах зон [в]>30° Паломарского атласа.

Таблица 1, рисунков 28. библиографий 10.

УДК 523.035

К решению задач переноса излучения в полубесконечных средах. Мнацаканян М. А. «Сообщения Бюраканской обсерваторин», 1978 г., вып. L, стр. 59.

Предлагается новая методика решения различных задач о выходящем из полубесконечной среды излучении. Фактически построен математический аппарат, основанный на введении оператора инвариантности G, обладающий физической прозрачностью и, по сути дела, представляющий собой не что нное, как аппарат инвариантности в обычном смысле Амбарцумяна. Даются иллюстрации на примерах почти всех хороню известных простейших задач теорий переноса излучения в полупространстве.

Библиографий 12.

УДК 523.035

Габлицы некоторых функций теории переноса излучения. Андреасян Р. Р. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 79.

Приводятся таблицы функций $F(\tau,\eta)$ и $F(\tau,\xi)$ для разных значений λ . При изотропном монохроматическом рассеянии в однородной среде посредством этих функций элементарно выражается ядро $Z(\tau,\eta,\xi)$ уравнения Фредгольма, связывающего задачи переноса в слое конечной оптической толщины с соответствующими задачами для полубесконечной среды. Функция $Z(\tau,\eta,\xi)$ сама описывает режим излучения в полубесконечной среде, освещениой параллельными лучами. Кроме того, с помощью функций $F(\tau,\eta)$ и $F(\tau,\xi)$ записываются квазнасимптотические решения задач переноса для слоя конечной оптической толщины.

Таблиц 13, библиографий 7.

УДК 522.59

Преобразование частоты вверх как метод детектиропания инфракрасного излучения в астрономии. Мелик-Алавердян Ю. К., Фрадкин А. Н. «Сообщения Бюраканской обсерватории», 1978 г., вып. L. стр. 95.

Рассмотрен астрономический приемник инфракрасного излучения, основанный на нелинейном преобразовании излучения. Рассчитаны основные параметры этого приемника и сформулированы основные требования к его конструкции.

Таблиц 4, рисунков 4, библиографий 18.

УДК 522.59

Расчет оптимального астрономического преобразователя частоты, Мелик-Алавердян Ю. К., Фрадкин А. II. «Сообщения Бюраквиской обсерватории», 1978 г., вып. L, стр. 107.

В работе выполнен расчет эффективности ООЕ преобразования в видимый диапазон инфракрасного излучения в фокусе телескопа. Полученные соотношения позволяют выбрать оптимальную для данного телескопа и имеющегося нелинейного кристалла схему преобразования и рассчитать ожидаемую эффективность преобразования и величину преобразованного сигнала.

Рисунок 1, библиографий 5.

УДК 523. 164

Амплитудный модулятор с двумя выходами. Панаджян В. Г. «Сообщения Бюрвканской обсерватории», 1978 г., вып. L, стр. 111.

Описывается схема двухканального амплитудного модулятора с двумя симметричными выходами, разработаниая для двухканального модуляцнонного раднометра Грэхема Бюраканской астрофизической обсерватории,

Рисупок 1, библиография 1.

УДК 523.035

К вопросу о вычислении ү-функции Амбарцумяна. Андреасян Р. Р., Дана Э. Х. «Сообщения Бюраканской обсерватории». 1978 г., вып. L, стр. 114.

В работе приводится новое функциональное уравнение для функции Амбарцум Вычисления ф-функции из этого уравнения оказались эффективнее известных с бов. Результат обобщается на случай анизотропного рассеяния, т. е. приводится логичное уравнение для H^{m} -функции Амбарцумяна—Чандрасскара. Библиографий 5,

