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INSTABILITY OF A NORMAL SHEAR (SH) WAVE IN A WEAKLY INHOMOGENEOUS
ELASTIC LAYER
The article studies the effects of longitudinal weak heterogeneity of the material, as well as
the geometric weak heterogeneity of the elastic layer surfaces on the normal shear wave, under
various mechanical boundary conditions. It is shown, that in case of hard-clamped smooth
surfaces of an isotropic elastic layer, the asymmetric localization of the wave energy occurs near
the middle plane of the layer. In case of mechanically free smooth surfaces, the localization of
the wave energy occurs in the near-surface zones. But more intensively the localization appears
again near the middle plane of the layer. In both cases, due to the material inhomogeneity
influence on the normal wave, two new cramped frequencies appear. In case of weakly
inhomogeneous mechanically free surfaces, the frequency transmission zones of the formed
wave (as well as frequency default zones) and localization in the near-surface layers of
heterogeneity appear.
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INITIATING STUDIES OF ZEROS OF SOLUTIONS OF SOME BASIC
DIFFERENTIAL EQUATIONS

Abstract

Despite the fact that the zeros of solutions of ordinary differential equations were
widely studied, we were not able to find publications concerning zeros of solutions of
the basic equations x" = f(x,t). A recent principle of zeros giving bounds for the
number of zeros of real functions permits to initiate similar studies.

Also, we consider some large systems of equations; both autonomous and non-
autonomous. Particularly we study the well-known system of equations x" = P(x, y),
y' = G(x,y), where P(x,y) and G(x,y) are arbitrary polynomials. For an arbitrary
solution (x(t),y(t)),0 < a <t < b < oo, of this system we give upper bounds for the
number of zeros of x(t) and/or y(t) occurring on the segment [a, b].
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Introduction. An essential part of studies in ordinary differential equations
F(x,y,¥',...) = 0 (both real and complex) relates to oscillations (i.e. zeros) of their
solutions. However, we were not able to find publications in mathematical journals
related to zeros of the most basic equation x" = f(x, t). Making use a recent principle
of zeros of real functions we give easily (in section 1) upper bounds for the number of
zeros of solutions x(t).

As to the zeros of solutions of systems of equations Fi(x,y,x’,y") =0,
Fa(x,y,x',y") = 0, they seemingly were not considered at all; at least we are not
aware of corresponding publications in mathematical books and journals. This should
be considered as an essential gap in differential equations since the solutions of the
systems admit a lot of interpretations in different applied fields.

In section 2 we initiate similar studies by giving upper bounds for a number of
zeros of solutions of some widely utilized autonomous and non-autonomous system
of equations.

1.  On zeros of solutions of equations x' = f(x, t).
Consider the equation
x'=f(x,0) €Y)
and its solution x(t) satisfying the following quite common restrictions: x(t) €
C?*[a.b], t € [a,b], My:=max_{a <t < b}|x(t)| < oo, f(x,t) € C*(d), where d is
the rectangle —M, < x < M,,a <t < b, and assume that ¢;: = sup( req|f (x, )| <
0, ¢3: = Suprpeal 06 O] < o0 and c: = sup(oyeal fL (D] < o0,

Denote by Niqp](x = 0) the number of zeros of x(t). If there are intervals in
[a, b], where x(t) are identically equal to zero we will count each similar interval as
one zero.

Theorem 1. For any solution x(t) satisfying the above assumptions we have

1
N[a’b]](X = 0) < ; [(C1C3 + Cz)Mx + 2C12]|b - a| + 1. (2)

Comment 2.1. Notice that in the most considered case, when f(x,t) is a
polynomial P(x,t), the constants c;,c; and c3 can be majorated by some easily
determined magnitudes depending just on the coefficient and degrees of P and M,.

2. On zeros of solutions of systems of equations

Consider first solutions (x(t),y(t)),0<a<t<b <o, of the following

autonomous system of equations
x'=Ply), y =Gxy), 3
where P(x,y) and G(x,y) are arbitrary polynomials.

The case when P and Q are linear was studied in detail by Poincaré in his famous
works, see for instance [3]. Particular cases of equation (1), where P and Q are
polynomials of degree 2 and 3 arise in a huge number of applied problems (in biology,
economics, physics, environmental sciences). The general case of equation (3) was
touched much less.

Since the solution (x(t),y(t)) is a pair of functions we consider the number of
zeros both for x(t) and y(t). Denote by Nigp(x = 0) (by Nigqp(y = 0)) the number
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of zeros of x(t) (of y(t)). If there are intervals in [a, b], where x(t) (or y(t)) are
identically equal to zero we will count each similar interval as one zero.

Denote x(t),y(t) € C?*[a, b], if x(t),y(t) have continuos second derivatives in
[a,b], —w<a<t<bh<o. Also denote M, =max,c<p|x(t)] and M, =
Maxa<esp|y (B)]-

Theorem 2. For any solution (x(t),y(t)) € C*[a, b] of (1) we have

Nigp(x=0) <K (b—a)+1, (4)
where K, depends on (and easily determined by) P, Q, M, M,,.
Here
K, = leM,;T+ KzX’
Kix = maxqem, yj<m, |Pe (X, V)P (x,¥) + By (x, y)Q(x, y)|
and

Kox = 2maxjyiem, yjsm, P2 (%, ¥)-

Comment 1. Obviously, similar estimate holds also for the number of zeros
Nig,p1(x = 0) of the solutions y(t).

Comment 2. If we need to give upper bounds for the number Ny, (x = h) of
solutions of x(t) = hon [a, b], where h = const # 0, we can (making use substitution
X(t) = x(t) — h) consider the equation

X'=PX,y), ¥y =QX,y). ®)

Then applying Theorem 2 to (5) we will get upper bounds for N, ,(x = h).

Comment 3: a practical problem. Assume x(t) = h at the point T,_j, € [a, b] and
Te=n € [a, b] is the next point, where x(t) = h. The difference T,_;- T\—p, indicate
the time we need to reach the same level x(t) = h. In other words, we consider the
following question: how long does it take to recover a given level (t) =h?

A similar problem may arise in many applied fields.

If h =0 we can apply Theorem 1 with a=T,_, and b = T;_, and taking into
account that Ny, _ 7= 1(x =h =0) =2 we get 1 < K,(b— a), i.e. we obtain the
following

Corollary 1. For the recovering time when h = 0 we have

im0~ Tem0 2 (6)
If h # 0 we can consider the system of equations (4) and obtain quite similarly
below bounds for Ty_; — Ty—; when h # 0.

Comment 4: an illustration of the predator-prey model. The Lotka-Volterra's

equation describes a predator-prey (or parasite-host) model which assumes that, for a

X

set of fixed positive constants A (the growth rate of prey), B (the rate at which
predators destroy prey), C (the death rate of predators), and D (the rate at which
predators increase by consuming prey) the following equation holds:

x' = Ax — Bxy,y' = —Cy + Dxy. (7)
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Notice that usually, we know maximal possible upper bounds for the number of
preys and predators in a given area so that we can assume that the quantities of M,
and M, are known.

Consider the number Ny, (x = h) of solutions x(t) = h on [a, b]; Njqp(x = h)
shows how many time the quantity x(t) of preys can be equal h for t € [a, b].

Corollary 2. For the equation (6) and any h < M, we have
Niap(t = h) < = [kyy + ko] (b —a) + 1, ®)
where k, , andk,, are determined (a bit lengthily, however) very simply:
kiy = B*MZMj + BDMiM, + [2AB(1 + h) + BCIM,MZ + (1 + h)A*M,
k_{2,x} = 2M_{x}*A® + 4ABM_{x}*M_{y} + 2B*M _{x}*M _{y}*.
Besides, arguing as in Comment 3, we get
I

Tiepy — Ty = ———.
x=h x=h kl,x + kz,x

€)

3. Proofs.

Proof of Theorem 1. Consider a real function x(t), t € [a, b] with continuos x"'
(i.e. x(t) € C?*[a, b]) and denote by Nig,p)(x = 0) the number of the zeros of x(t); here
we count in N each possible interval, where x = 0 as one zero.

Our approach based on a general method (principle) permitting to give bounds for
zeros of "enough smooth" real function, see the book [1], item 5.3.2. Below we utilize
the simplest version of the principle (see paper [2] in this volume) which we state as
the following

Lemma 1. For an arbitrary function x(t) € C*[a, b] we have
b

1
Nia,p(x = 0) < EJ[Ix"(t)le(t)l +2[x'(0)]°]dt + 1. (10)

Theorem 1 immediately follows from inequality (10). Indeed, since for the solution
of x(t) of (1) we have
x'(0) = f(x0x' () + f{ (x, 1) = (6 Of (%, 0) + f (x, 1),
consequently we have
|x" ()| < cicz + ¢z,
so that taking into account that |x(t)| < M_{x}and [x'(t)]* < c,* we get
N[a‘b](x =0)<

b
1
;f[lfx'(x, OG0 + f (e Dlx(®] + 2[x'(O)°]dt + 1 <

1
- [(cic3 + c2)My + 2¢,%]|b —a| + 1,
and the inequality (1) is proved.
Proof of Theorem 2. Now we apply Lemma 1 to the solutions (x(t),y(t)) €
C?[a, b] of equation (2). Since x'(t) = P(x,y) and y'(t) = Q(x,y) we have
x"(0) = Pl(x,y) = P{(x, y)x'(8) + By(x, y)y' (1) =
Pe(x, )P (x,y) + Py (x,7)Q(x, y),
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consequently we have
Ix"O11x(O] + 2[x"(O]* < Kix|x (O] + Kpx
and applying (10) we get
N[a‘b](x = 0) <

b

1 1

;J-[K1X|x(t)| + Kyldt+1< p [KixMy + Ko ]J(b —a) + 1.
a

i.e. we obtain Theorem 2.

Proof of Corollary 2. Making use substitution X = x(t) —h we can rewrite the
equation (5) as
X' =PX,y)=X+mMA-BX+hy, y=0Xy) =-Cy+DX+hy1D

Then the zeros X are the solutions of x(t) — h = 0; respectively

Nigp(x = h) = Nigp (X = 0).

The corollary is trivial when we have only one solution of x(t) — h = 0.

Consider the case when we have two (or more) solutions of x(t) —h = 0. Then
obviously h < M,; otherwise, we can't have solutions of x(t) — h = 0.

Applying (9) to the equation (11) we have

N[a,b]b(x =h) = NgpX=0)<

1
;f[IP)'r(X.Y)P(X.Y) + Py (X, y)Q(X, y) My + 2P*(X, y)|]dt + 1. (12)

a
Further since P(X,y)) = (X + h)A — B(X + h)y we have
|Px(X,y)P(X,y) + B(X,»)QX,y)| =
[+ hA)(A-By)[(X+hA—-BX+h)y]|—-BX+h)[-Cy+DX+h)y]|l =
[(1+ h)(A—By)>(X + h) + BCy(X + h) — BD(X + h)?y|
Noticing that due to definitions and meanings all values 4, B, C, D, h are positive
and also noticing that My = M, — h = max,<;<p|x(t)| — h > 0 (consequently [X]| <
M, — h) and that
(A—BM,)? = A* + 2ABM,, + B*M;,
we get
Px(X,y)P(X,y) + (X, y)QX, )| =
(1 + h)(A* + 2ABM,, + B°M})M, + BCM,M, + BDM}M,, =
B*MjM, + BDMiM, + [2AB(1 + h) + BCIMyM, + (1 + h)A*™x;  (13)
here we take into account that X + h < My + h = M,,.
On the other hand
2P3(X,y) =2[(X + A —B(X + h)y]* <
2MZ2A% + 4ABMZ2y + 2B*M2y* <
2MZA* + 4ABMiM, + 2B*M;M; (14)
Substituting (13) and (14) in (12) we obtain Corollary 2.

Comment 5. The reader can easily see that the method above is applicable also for
some large classes of non-autonomous equations
X' =E(txYy),y =R(xy)
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We just need to assume that functions E (¢, x, y) and R(t, x, y) and their derivatives
in ¢, x and y admit upper bounds. Then we will get quite a similar result for solutions
(x(t),y(t)) of these equations.
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AP FUCUBN3UL
dhqhjudwptdunhjului ghuntpnibitph gnljunnp

Nrag zbUuuuuy Y}3eCELSHUL 2UHUUUNNPULECE LOARPONRULEP QCNLENP
NpuNrULOURCNRE3NPULLED LUNUQGFLART

Quwyws unynpulub phdbptughwy hwjwuwpmdubph msnudubph  qpoubkpp
Juwyunpklt nunwdbwuppws G, dkup sfupnquguip gl hpwwwpwlynudubp x ' =
f (x,t) hpdtwpwp hwjwuwpnidutph msmudubph qpnubtph Jtpwpbkpu: Ppulut
gnpéwnnyputph qpnubiph pwbwlht YEpupkpng, Jipetpu hwyjnbwpbpjws uyqpniupp
Py Enwhu twhwdbnuk] tdwbwnhy ntuntdbwuhpnipyniabbp:

Unyt hopduwémd  Jkbp nundbwuhpl] Ghp twlb x'= P (x,¥),y = G (x,¥)
hwjwuwpndubph huynuh hwdwlupgp, npnbtny P (x,y) b 6 (x,y) Juduyujub
puquuinudutp tu: Uju hwdwlupgh judwyulut (x (t),y (£)),0<a<t<b <o
Insdwt hwdwp dkip wwhu Gup diphtt vwhdwbtbp x (¢) b / Yud y (t) —h qpoubkph
pwth hwdwp, npnup puws tu [a, b] hwnduénid:

TPUT'OP BAPCETAH
IOKTOp GU3UKO-MaTeMaTHIeCKUX HayK

VHUITMUPOBAHUE UCCJIEIOBAHMI HYJIEH PEITEHWI HEKOTOPBIX OCHOBHBIX
JOOEPEHITAIBHBIX YPABHEHUI

Hecmotps Ha TO, 4TO HyIM peureHHil OOBIKHOBEHHBIX AU(QepeHIINaTIbHbIX ypaBHEHU
GBUIM IIMPOKO M3Y4eHBI, MBI HE CMOIIM HalTH ITyGIMKAI[Uil, KacaloluXcsa HyJIel pelreHui
OCHOBHBIX ypaBHEHMH X "= f (x,t). Henasuwmit NpUHIMI HyJeH, Jalomuil TpaHULBI g
YpCIIa HyJeH peaabHBIX QYHKIMH, TO3BOIAET MHUIIMHPOBATh aHAJOTMYHEIE NCCIeTOBAHUS.

Taxoxke MBI paccMaTpuBaeM HEKOTOpBIE CHCTEMBI YPaBHEHHWI: KaK aBTOHOMHEBIE, TaK H
HeaBTOHOMHBIe. B dYacTHOCTM, MBI U3y4aeM M3BECTHYIO CHCTEMY ypaBHEHHIt
x'"=P(xy),y = G(xy), tae P(x,y) u G (x,y) - npousBoibHblEe MHOTOWIEHBL. s
TIPOU3BOJIBHOTO PelleHus

x@®),y(®),0<a<t<b <oo 3T0#f CUCTEMBI MBI /JdeM BEpXHUE OIIEHKH [ UHCIa
Hysei g x (t) u/ umu y (t) Ha oTpeske [a, b].
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