LXXVIII

1984

УДК 519.876.3

МАТЕМАТИКА

Г. Г. Мартиросян

О некоторых оптимизационных задачах для систем с неравномерным износом

(Представлено чл.-корр. АН Армянской ССР Р. Р. Варшамовым 16/ІХ 1983)

Рассматривается задача (5) из (1). Функции $b_i(t)$ предполагаются непрерывными, строго возрастающими, неотрицательными на $[0, \infty)$ и положительными на $(0, \infty)$. Сохраняются все определения и обозначения, данные в (1,2).

Рассмотрим класс расписаний для задачи (5) (1), имеющих не более (s-1)-ой перестановки деталей.

Определение 1. Расписания ρ и ρ' называются подобными, если последовательность $\beta_j^1,\ \beta_j^2,\dots \beta_j^3$ расписания ρ совпадает с соответствующей последовательностью расписания ρ' для $j=1,2,\dots n$.

Ясно, что подобие задает на множестве расписаний с (s-1)-ой перестановкой отношение эквивалентности с числом классов эквивалентности $r_s \leqslant s^{n1}$. Для каждого такого класса K, рассмотрим оптимизационную задачу

$$\begin{cases} T_s \to \max \\ z_l(\rho) \ge 0 \end{cases} \qquad l = 1, 2, \dots, n, \rho \in K_s.$$
 (1)

Пусть $T_{i_0}^*$ — решение такой задачи. Обозначим $T_{i_0}^* = \max T_{i_0}^*$ и рассмотрим последовательность $T_{i_0}^*$, $T_{i_0}^*$, Ясно, что если $T_{i_0}^*$ — решение задачи (5) (1), то $\forall_i T_{i_0}^* \in T_{i_0}^*$, а если $f < i_0$, то $f < T_{i_0}^* \in T_{i_0}^*$. Возникает вопрос, существует ли такое i_0 , что для $f \geqslant i_0$ $T_{i_0}^* = T_{i_0}^*$?

Для ответа на него понадобится

Лемма 1. Пусть q_i —решение уравнения $\int_0^x b_i(t)dt = 1$. Тогда для всякого $T \leqslant q_1$ существует расписание ρ такое, что $T(\rho) = T$ и $z_i(\rho) = z_j(\rho)$ $i, j = 1, 2, \ldots, n$. Доказительство проводится индукцией по n аналогично доказательству нижеследующей теоремы 1, ввиду чего мы его не приводим.

Теорема 1. Существует $i_0 \le 2^{n-1}$ такое, что для любого $j \ge i_0$ $T_j = T_0$.

Показательство. Согласно лемме 2 (1) достаточно показать существование расписания ρ с числом перестановок не большим $2^{n-1}-1$, такого, что $z_l(\rho)=0$ $i=1,2,\ldots,n$. При n=2 теорема сразу следует из теоремы 3 (1). Пусть теорема верна для $n=1,2,\ldots,(i-1)$. Покажем ее справедливость при n=i. Рассмотрим следующее расписание ρ : 1-ая деталь работает на месте A_1 время $T' \leq q_1$, а затем

на месте A_n до полного износа. $2,3,\ldots,i$ -ая детали работают до момента T' на местах A_2,A_3,\ldots,A_l по расписанию ρ' построенному по лемме 1, а затем на местах A_1,\ldots,A_{l-1} по расписанию ρ'' такому, что $z_j(\rho')+z_j(\rho'')=0$ (его существование утверждается предположением индукции). Пусть $T^*(T')$ —момент полного износа 1-ой детали, а $T^{**}(T')$ —момент полного износа остальных деталей (если $T'=q_1$, то $2,3,\ldots i$ -ая детали работают на местах A_2,\ldots,A_l до полного износа). Рассмотрим функцию $\omega(T')=T^*(T')-T^{**}(T')$. Она непрерывна по теореме о неявных функциях на интервале $[0,q_1]$. $\omega(0)>0$, $\omega(q_1)<0$, поэтому существует $T'\in(0,q_1)$, такое, что $\omega(T')=0$. Соответствующее этому T' расписание ρ будет искомым.

Теорема 1 явно задает класс подобия оптимального расписания ρ , а для нахождения моментов перестановок задает систему 2^{n-1} уравнений с 2^{n-1} неизвестными и гарантирует ее разрешимость в множестве положительных чисел.

Рассмотрим случай $b_l(t) = \alpha_l(t) + \beta$, часто встречающийся в реальных условиях. Пусть D—следующий определитель:

$$D = \begin{bmatrix} \alpha_{1} - \alpha_{2} & \alpha_{2} - \alpha_{3} & & & \alpha_{n-1} - \alpha_{n} \\ \alpha_{2} - \alpha_{3} & \alpha_{3} - \alpha_{4} & & & \alpha_{n} - \alpha_{1} \\ & & & & & & & & & & \\ \alpha_{n-1} - \alpha_{n} & \alpha_{n} - \alpha_{1} & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\$$

Теорема 2. Для $b_i(t) = xt + \beta$ при D=0 существует оптимальное расписание ρ , содержащее (n-1)-y перестановку.

Доказательство, Зададим параметры 3/ расписания ρ следующим образом; $\beta = (j+i-1) \bmod n$. Согласно лемме 2 (1) и замечанию к ней достаточно показать существование положительного решения системы

$$2 - (\alpha_{1} - \alpha_{2}) T_{1}^{2} - (\alpha_{2} - \alpha_{3}) T_{2}^{2} - \dots - (\alpha_{n-1} - \alpha_{n}) T_{n-1} - \alpha_{n} T_{n}^{2} - 2\beta T_{n} = 0
2 - (\alpha_{2} - \alpha_{3}) T_{1}^{2} - (\alpha_{3} - \alpha_{4}) T_{2}^{2} - \dots - (\alpha_{n} - \alpha_{1}) T_{n-1} - \alpha_{1} T_{n}^{2} - 2\beta T_{n} = 0
2 - (\alpha_{n} - \alpha_{1}) T_{1}^{2} - (\alpha_{1} - \alpha_{2}) T_{2}^{2} - \dots - (\alpha_{n-2} - \alpha_{n-1}) T_{n-1}^{2} - \alpha_{n-1} T_{n} - 2\beta T_{n} = 0$$

Пусть $D_i(a_1, \ldots, a_{n-1})$ —определитель D_i в котором i-ый столбец заменен столбцом $\binom{a_1}{a_{n-1}}$.

Решая уравнение (6) (1), найдем значение переменной T_n . Подставляя это значение (см. теорему 4 (2)) в (2) и исключая из (2) последнее уравнение, получим систему линейных уравнений относительно переменных $y_i = T_i^2$, решение которой y_i запишем в виде

$$y_i = \frac{D_i(2-\alpha_n T_n^2-2\beta T_n, 2-\alpha_1 T_n^2-2\beta T_n, \ldots, 2-\alpha_{n-2} T_n^2-2\beta T_n)}{D};$$

после некоторых преобразований получаем $T_1 = T_n \sqrt{\frac{T}{n}}$, что доказывает теорему.

Теорему 2 можно распространить на случай $b_i(t) = \alpha_i t^m + \beta$ небольшим видонзменением доказательства.

Для задачи (5) $(^1)$ при произвольных функциях $b_i(t)$ получена также

Теорема 3. При n=3 существует оптимальное для (5) (1) расписание с двумя перестановками.

Доказательство не приводим ввиду громоздкости.

Рассмотрим теперь другое обобщение задачи (2) (2). Пусть $2^{j}(t)$ —та доля детали j, которая износилась к моменту t при работе по расписанию р. Будем предполагать, что скорость износа ј-ой детали, работающей в момент t на месте A_i , зависит лишь от номера i и величины z(t). Для каждого i существует функция $b_i(t)$, определенная, непрерывная, строго возрастающая на [0, 1] и положительная на (0, 1) такая, что скорость износа детали, работающей по расписанию ρ в момент t на месте A_t , равна $b_t(z'(t))$. Предположим, что деталь обрабатывается только на одном месте Аг. Можно вычислить $B_i(t)$ —долю детали, изношенную за время t. Мы будем считать, что нам заданы лишь функции $b_i(t) = b_i(B_i(t))$. Пусть j-ая деталь при работе по расписанию ρ в момент t_0 поступает на место A_i . Пусть также $b_i(t_0)$ — скорость износа j-ой детали в момент t_0 . Тогда $b_i^p(t_0)$ = $=b_i(x)$, где x—корень уравнения $\int b_i(t)dt=z_p^i(t_0)$. Если j-ая деталь покидает место A_l в момент t_0 , то $b_j^*(t_0+\Delta t)=b_i(x+\Delta t)$ для $\Delta t \leqslant t_0$ — $-t_0$. Теперь если $z_i(\rho) = 1 - z^i(T(\rho))$, а P^{**} — множество всех расписаний в смысле (2), то задача формулируется так:

$$\begin{cases} T(\rho) \rightarrow \max \\ \rho \in P^{**} \end{cases} \tag{3}$$

Определение 2. Расписание ρ называется квазноптимальным, если в момент $I(\rho)$ для $j=1,2,\ldots,n$ $z'(I(\rho))=1$.

Теорема 4. Существует квазиоптимальное расписание с числом перестановок $2^{n-1}-1$.

В доказательстве используются в основном идеи доказательства теоремы 1. Определяется класс подобия расписания р и система уравнении, совместная в множестве положительных чисел, компоненты решения которой есть моменты перестановок.

Теорема 5. Всякое оптимальное расписание является квазиоптимальным.

Доказательство аналогично лемме 2 (1).

Теорема 6. Если $b(t) = \pi t$, то всякое квазионтимальное расписание является оптимальным.

Доказательство. Пусть ϱ —квазиоптимальное расписание, T_t —момент t-ой перестановки, $T_0 = 0$, $T_s = T(\varrho)$, $t = T_t - T_{t-1}$. Индукцией по f можно показать, что

$$z_{\varrho}^{i}(T_{j}) = \frac{1}{2} \left(\sum_{k=1}^{j} t_{k} \sqrt{\alpha_{\beta_{i}^{k}}} \right)^{2} \quad i = 1, 2, ..., n.$$

113 равенства $z^l(T_s) = 1$ после несложных преобразований получаем 10

$$T = \frac{\pi}{\sqrt{2\sum_{i=1}^{N} \sqrt{\pi}}}$$
. Отсюда и из теоремы 5 следует теорема 6.

Замечание. Теорему 6 можно доказать и в случае $b_i(t) = a_i t^m$

Teopema 7. Ecau
$$b_i(t) = a_i t + a_i u \frac{\pi i}{\sqrt{a_i}} = \frac{\pi}{\sqrt{a_j}} = a_i, i, j = 1, 2,$$

... п, то всякое квазиоптимальное расписание является оптимальным.

Доказательство. Индукцией по І можно доказать, что

$$z_{p}^{l}(T_{l}) = \frac{1}{2} \left(\sum_{j=1}^{l} t_{j} \sqrt{\alpha_{\beta_{l}^{j}}} \right)^{2} + a \left(\sum_{j=1}^{l} t_{j} \sqrt{\alpha_{\beta_{l}^{j}}} \right), \quad i = 1, 2, ..., n.$$

Из равенства $z'(T_i) = 1$ получаем, решая квадратные уравнення н суммируя по i,

$$T_s = T(\rho) = n(\sqrt{a^2+2}-a).$$

Отсюда и из теоремы 5 следует доказываемая теорема.

2. Գ. ՄԱՐՏԻՐՈՍՅԱՆ

Անհամաչափ մաչվածություն ունեցող համակաբգեբի համաբ մի քանի օպտիմիզացիոն իւնդիբնեբի մասին

Մեսին ուցույն ը այն ուտչուրը ուրափարարինը և ավանանարը աշկատարնի հարտարի ուջույն ընտերը ընտերը ուրանուն և անուրան անանությունը անուրան առակջարի հարտարի ուջույն անանարները ուտանվաց ըն դաչուրը անանան առակջարի հարտա ուրանար բանարրը ուտանվաց ըն դաչուրը անանան անանարի հարտա ուրանարրը և այն սաչուրանարտանումը ընտերին և անանանար անանարում աշխատարնի հարտա ուրանարին և այն սաչուրանարտանումը ընտերին և անանանար անանարարին անանարարին անանարարին անանանարան անանանարի հարտանարտաներում ուտանարտը ուրանարտին և անանարտանարին և անանարտանարին անանարտանարին անանանարտանարտանարտանարտանարտանարտությունը անանարտանարտանարտությունը անանարտանարտությունը անանարտանարտություններին և անանարտանարտանարտությունների ուտանարտանարտանարտանարտություններին անանարտանարտանարտանարտանարտությունների ուտանարտանարտությունների ուտանարտանարտությունների անանարտանարտանարտությունների ուտանարտանարտությունների ուտանարտանարտությունների ուտանարտությունների ուտանարտանարտությունների ուտանարտանարտությունների ուտանարտանարտությունների ուտանարտանարտությունների ուտանարտանարտությունների ուտանարտությունների ուտանարտության անանարտությունների ուտանարտությունների ուտանարտության ուտանարտությունների ուտանարտության անարտության անանարտության անարտության ուտանարտության անարտության անարտության անարտության անարտության

ЛИТЕРАТУРА— ЧРИЧИВОВ РВОВЫ

¹ В. К. Леонтьев. Г. Г. Мартиросян, Кибернетика. № 5, 1983. ² В. К. Леонтьев, 1. Г. Мартиросян, ДАН АрмССР, т. 76, № 4 (1983).