IMPROVING DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH
WITH SPARSE CONNECTIONS AND MODEL PRUNING

GRIGOR BEZIRGANYAN
Technical University of Munich
Master’s student
grigor.bezirganyan@tum.de

HAYK AKARMAZYAN
National Polytechnic University of Armenia
PhD in Engineering, Associate Professor
akarmazyan@gmail.com

DOI: 10.54503/2579-2903-2022.1-203
Abstract

Neural networks have contributed to many breakthroughs across several
disciplines. Their ease of use and scalability have motivated the development of many
techniques in computer vision, natural language processing, audio analysis, etc. The
neural network architecture plays a dominant role in its performance, and there have
been many advances on designs and strategies for defining efficient neural networks.
However, manually tuning neural architectures requires a significant amount of time
and expert knowledge. To overcome the difficulty of manually setting up the
architecture for a neural network, Neural Architecture Search (NAS) has gained
popularity. NAS methods involve three general dimensions, namely search space,
search strategies, and performance estimation strategies [1]. Different approaches vary
in these dimensions.

DARTS [2] corresponds to a cornerstone work for differentiable NAS. It is an
order of magnitude faster than evolutionary and reinforcement learning-based
algorithms and produces intuitive results which have shown a good performance on
several computer vision and natural language processing tasks. Still, DARTS has
several pitfalls which have motivated this work. Namely, the method suffers from
instability to hyperparameters, as shown in NAS-Bench-201 experiments [4].
Moreover, it can quickly lead to degenerate neural architectures, which do not perform
well at all, in case the structure of the network is not configured properly in the search
phase. DARTS also depends on several humandesigned heuristics, which can affect the
final performance significantly if not selected properly. Finally, the heuristics for
building the final architecture lead to a big discrepancy from the architecture used in
the search phase, which leads to instability between the search phase and the final
network performance.

In this work, we focus on tackling the drawbacks of DARTS, by incorporating
in the search phase a gradual pruning strategy while using single-level optimization,
promoting the network connections to be sparse. Careful analysis of the weights shows
that our method achieves more stable results, is less prone to degenerate architectures
and indeed leads to better ones, and does not require heuristics to get the final neural
architecture. The source code is available on demand, to facilitate reproducibility.

Keywords and phrases: Neural Architecture Search, DARTS, Sparse Models,
Deep Learning

203

mailto:akarmazyan@gmail.com
https://doi.org/10.54503/2579-2903-2022.1-203

LE3rNLU3hL AUMSUrUMNESNRG3UL HhdErEL3YNT NPNLUUL
FUrGLUYNRU L LNUPM UbUSNRULENP B4 UNDELP ESUUL UbRNSNY

arhanr AERPMPAUL3UL
Ujnwtubup SEuuhywywu <wdwjuwpwu
dwaghuwnpnu
grigor.bezirganyan@tum.de

<U34y uuurvur3uu
Cwjwunwuh Ugqgqwiht Mnjhinbiuuhyulywu <wdwuwpwu
Swpuwpwaghunnejwu ptluwsdnt, nngtitn
akarmazyan@gmail.com

Cwdwnnunwghp

Lbjpnuwjhtu gwugbipp uywuwnb) Gu ghnwlwu Jdh 2wpp ninpunutipnid
wmwppbip pwgwhwjnndubiph: THpwug ogunwgnpddwu hGownnieiniup i
dwuaunwpwjunypniup fupwub] tu hwdwlywpgswihu nGunnnigjwu, puwlwu
lqyph dowydwu, wninhn ybpnwdnygjuu bt w)| pwqlwphy wnbluuhywubpp
dowydwup: L pPNuwhtu gwugh dwpnwnpwwbnnieinitup wnwugpwihu nbp £
fuwnnud npw wpryniuwybnnyejwu dby, wyn wwwbwnny pwqdwehy
wnwofuwnwgnuiubp Bu gpwugdb] npwug twhuiwgddwu dby' wybih
wpryniwybin - gwugbp unwuwint hwdwp: Uwlwiu, ubpnuwhu
dwpunwpwwbnnypywu &Gnpnd Yuwpgqwynpnudp - wwhwugnid £ qquih
pwuwynypjwdp dwdwuwy bi thnpdwghunwlwu ghwnbihputip: Lbjpnuwhu
gwugh Stwpunwpwwbtinneniup dbnpny Yupquiynpbiint nddwpniejniup
hwnpwhwpbint hwdwp d&6d wwpwdnd £ gl Wwpnwhu
dwpunwpwwbnnypywu npnuntdp (NAS): NAS dbennubpp ubipwnnid Gu tiptip
punhwuntp swihnwiubp' npnudwu twpwdnLRjnLu, npnudwu
nwqdwywpniejniuutip L npwyh quwhwwndwu nwqdwywpneniuutp [1]:

DARTS-p [2], |hubiiny nh$tpbugynn dwpunwpwwbnniygjut npnudwu
Gnwuwy, Ywnpbinp bpwuwynyenit § niubigtip NAS-h dbg: Uju dh pwuh wuqwd
wpwa L, pwu bynpnighnu B wdpwwundwtu nwnigdwu Jpw hhdudwd
wighphryubipp G wwihu £ hunnthnpy wpryntupubin, npnup jwy wpryntup Gu
wnwihu hwdwlwpgswiht wnbunnniejwu Gr puwlwu |Ggyp dowlydwu dh 2wpp
fuunphpubpnud: Wuniwdbuwjuphy, DARTS-U ntup dh pwuh eny| Ynndbn, npnup
npnbl G wju woluwwnwupp gpbn: Uwutwynpwwbu, dbennnd wnw &
hhwbpwwpwdbnpbph wuwyniunyeywu fuunhpp, huswbu gnyg £ wnpjwd
NAS-Bench-201 thnpdtipnwd [4]: UdbLihu, nw Ywpnn £ wpwg hwugbgub
ubpnuwiht dwpunwpwwbunniyejwu nbgbiupwgdw: Fpwup pninpnyht jwy sku
wotuwwnnid, bt npnudwu thnynud guugh Yunnigwdpp han sh Yugqdywd:
DARTS-p uwbi Ywhws Lt dwpnn Ynndhg uwjuwgdwsés dh pwuh

204

Eyphunhlutiphg, npnup Ywpnn G bwwbiu wanb) Yepguwlwt wpryniuph
ypw, 6Ghonn spunpybiint nbwpnud: dbpowwbiu, Jbpouwywu Gwpunw-
pwwbtinnpwi Yunnigdwu tYyphunplwubipp hwugbigund Gu npnudwu
thnynd oguwignpdynn Swpunwpwwbinnygjwu JdGd wuhwdwwywunwu-
fuwunipjwu, husp hwugbigund £ npnudwt thnyp Ge gwugh ybpouwlwu
wnryntuph dhobiL wulywyniuniejwu:

Wu wuwwnwupnd dbup YGuwnpnuwunwd Gup DARTS-h pbipni-
pjniuubph Jepwgdwtu dpw’ npnudwu dinynd ubpwnbing wunpbwuwlwu
Ewndwu nwqdwydwpniginit’ dhwdwdwuwy ogunwgnpdting dbly dwlwpnwyh
owwhdhqugnu® uwwuwnbin gwugwiht Ywwbph unupwgdwup: Yshnubpp
dwupwypypwn ybpnidnyeniup gnyg & wwihu, np dbp dbpnnp gpwugnud
wyblh Yuyniu wpryniupubp, wybih phs hwyjwd L nbgbubpwgdwsd
dwpunwpwwbwnyenuubiphu, G sh wwhwuonud EYphunplyw’ ybpouwlwu
ubpnuwjhu Swpunwpwwbnngeniup unwuwine hwdwnp: Unpiniph Ynnp
hwuwubh £ wwhwuoh' ypwpwnwnpbihnieniup hbpunwgubine hwdwp:

Pwtwih pwnbp b pwnwlwwwlgnipyniuubp. ubpnuwihu dwpunw-
pwwbtiinnyejwu npnuntd, DARTS, unup dnnbjutp, funpp ntunignu:

205

VJIYUYIIEHUE NOUCKA JUPPEPEHIIMAJIBHOW HEMPOHHOM
APXUTEKTYPBI C PABPEXKEHHBIMUW COEJJUHEHUSAMUA U
OBPE3AHUEM MOJIEJIH

I'PUT'OP BE3UPT AHSITH
Texuuueckuil yauBepcuteT MioHxeHa
MarucTpaHT
grigor.bezirganyan@tum.de

AK AKAPMA3SIH
HannoHanbHBINA TONUTEXHUYECKUH YHUBEPCUTET APMEHUH
KaHJUAaT TEXHUYECKUX HAYK, JOLECHT
akarmazyan@gmail.com

AHHOTAIUSA

HeiipoHHbIe ceTH ChIrpaiy OOIBIITYIO POJIb B COBEPIICHUH OTKPBITHI BO MHOTHX
obnacTsax Hayku. VX mpocToTa WCMOIB30BAaHHS W MACIITAOUPYEMOCThH ITOCITY KHIIH
CTUMYJIOM U1 Pa3pabOTKH MHOTHX METOIMK B cdepe KOMIBIOTEPHOTO 3pCHUS,
00pabOTKHU €CTECTBEHHOTO S3bIKa, aHAJK3a 3BYKa M JAPYTHX. APXUTEKTYpa HEHPOHHOM
CeTH WMEeT MPUOPHUTETHOE 3HAUCHHE B €€ MPOM3BOAMTEIHFHOCTH, a B 00JacTH
pa3paboOTKH M CTpaTeruid omnpeneneHus: 3PPeKTUBHBIX HEHPOHHBIX CETe OBUIO YXKe
JIOCTUTHYTO HEMaJlo pe3yibTaToB. OJHAKO pydYHAasi HACTPOHKAa HEUPOHHBIX aPXUTEKTYP
TpeOyeT 3HAYUTENHBHOIO KOJIMYECTBA BPEMEHM W OKCIEPTHBIX 3HaHWil. B neme
MIPEOJIOJICHNsI TPYOHOCTH PYYHOM HACTPOMKH apXHUTEKTYphl HEWPOHHON CETH
MOMYJIIPHOCTH MpHoOpeia cucTeMa NMoucka HeHpoHHOH apxXxuTeKTyphl (NAS). MeTtoabl
NAS BrII04aI0T B ce0s TpY OCHOBHBIX M3MEPEHHs], @ UMEHHO: IPOCTPAHCTBO IOUCKA,
CTpaTerMd TMOWCKAa M CTPaTerWH OLCHKH mnpousBoauTenbHOCTH [1]. Pasmudnbie
MOJTXOJTbI OTIIMYAIOTCS B COOTBETCTBUU C ITUMH U3MEPCHUSIMH.

DARTS [2] nmpencraBmsieTcss KpaeyroibHbIM — KaMHeM paboThl IO
muddepennupyemoit NAS. OH Ha HOpPSAAOK OBICTpee AITOPUTMOB, OCHOBAHHBIX Ha
HBOJIFOIIMOHHOM OOyYeHHH W OOYYEHHH C MOJKPEIUICHHEM, M [aeT HHTYHUTHBHO
MOHSATHEIE PE3yNbTAThl, KOTOPhIE TOKAa3aJdl BBICOKYIO IPOU3BOJUTEIHHOCTD B Pa3HBIX
3a71a4ax KOMITBIOTEPHOT'0 3peHMs 1 00pabOTKN €CTECTBEHHOTO s3bIKa. TeM He MeHee y
DARTS ecTp HECKOJIBKO HEIOCTATKOB, KOTOPBIE CTAIA OTIPABHOW TOYKOHW ISl DTOU
paboTEl. A WMEHHO: METOJ CTpalaeT HEYCTOMYMBOCTBIO K THIIEpIIapamMeTpaMm, Kak
nokaszaHo B akcrepumentax NAS-Bench-201 [4]. Bomee Toro, 310 MOXeT OBICTPO
NPUBECTH K BBIPOXKICHUIO HEHPOHHBIX apXHUTEKTYp, KOTOpHIE BOOOINE IUIOXO
paboTaroT, ecii CTPYKTypa CETH HE HACTPOCHA MOJDKHBIM 00pa3oM Ha 3Tale MOWCKa.
DARTS Taxke 3aBHCHT OT HECKOJBKMX pa3pabOTaHHBIX YEJOBEKOM JBPUCTHK,
KOTOpPBIE MOTYT 3HAYUTEIBHO MOBJIUATH HA KOHEUHYIO MTPOM3BOAUTEIEHOCTD, €CIIH OHH
He oA00paHkl TOJDKHBIM 00pa3oM. HakoHeII, SBpUCTHKH MTOCTPOCHUST OKOHYATEIIBHOI
APXHUTEKTYPhI MIPUBOAAT K OOJIBIIOMY PACXOXKICHHUIO C apXUTEKTYypPOH, UCIIOIb3yeMOn
Ha JTame IOMCKAa. OTO NPHUBOAMT K HECTAOWJIBHOCTH MEXJIy JTallOM IIOHUCKa H
KOHEYHOI MPON3BOAUTEILHOCTHIO CETH.

B naHHOI paboTe MBI COCPEJOTOYMMCS] Ha yCTpaHeHUU HenoctaTkoB DARTS
MOCPEACTBOM JOOABIEHUSI CTPATETMH MOCTEIEHHOTO COKpAIEHUsI Ha 3Tale IOMCKa,
OyIeM HCIIONIb30BaTh OJHOYPOBHEBYIO ONTHMH3ALMNIO, CHOCOOCTBYS Pa3peEHHOCTH
CETEeBBIX NOAKIIOUYCHUA. TmiaTenbHBIA aHadu3 BECOBOTO 3HAYCHHUS ITOKA3BIBACT, UTO

206

HaIll METOJ JaeT Ooyiee CTaOMIBHBIC PE3yabTAThl, MEHEE CKIOHCH K BEBIPOXKICHHIO
aApPXUTEKTYpP W CIOCOOCTBYET HX 0oJice BHICOKOH 3(PPEKTUBHOCTH, a TAK)KE HE TpeOyeT
OBPUCTUKH JUISl TIOJNYyYCHHS OKOHYATENbHOW HEHpOHHOW apxurekTypbl. Jlims
o0Jer4eHus BOCIPOM3BOAMMOCTH UCXOIHBIN KO/ JOCTYIIEH MO 3a1pocy.

KiaroueBble cji0Ba M CJIOBOCOYETAHMS: TOWUCK HEUPOHHOH apXUTEKTYpHI,
DARTS, paspexeHHbIe MOJICIH, TITy00KOe 00yUeHHE

Introduction and Related Work

Gradient-based Neural Architecture Search (NAS) has become very popular in
the last several years with the introduction of DARTS [2]. This is a fast search
procedure compared to other NAS methods, showing good results on different
benchmarks [5].

In the setting of differentiable NAS, the aim is usually to learn a good structure
for a cell that should be reused across wider/deeper networks. One of the fundamental
ideas of gradient-based NAS was proposed in DARTS [2], where the network learns
both the weights and the connections of the layers at the same time. Figure 1
demonstrates the representation of one cell in the neural architecture that DARTS can
produce. Initially, the connections between the nodes are unknown (a) and all the
possible operations are placed as choices on the edges (b). Afterwards, the weights of
the network are learned along with the weights of the connections between nodes (c).
Eventually, only the operations with the highest connectivity weights are selected (d).
It is important to note that each node within the cell is connected to all its predecessors.
So, node 4 is connected to all the nodes from 1 to 3, node 3 to nodes 1 and 2, and node
2 is connected to node 1. Each connection weight between the nodes is characterized
with value a;; , which is passed through a softmax() function before reaching the next
node.

In the original DARTS settings, the possible operations are defined as
sep_conv_3 x 3, sep_conv_5 x 5, dil_conv_3 x 3, dil conv 5 x 5, avg_pool 3 x 3,
max_pool_3 x 3, skip_connect, and none. The numbers a x b represent the kernel size,
sep_conv represents a separable convolution, dil_conv is a dilated convolution with
dilation rate 2, avg_pool and max_pool are the average pooling and max pooling
operations, correspondingly, skip_connect propagates the input further without
modifying it, and a none connection just multiplies the input by 0. The network
weights are optimized on the training set, while the connection weights are optimized
on the validation set. For each epoch, the model first updates the connection weights on
the validation set and afterward tunes the weights on the training set. The target is
defined by bilevel optimization, where the aim is to minimize the validation loss by
choosing the best architecture weights a. The authors argue that single-level
optimization will have problems because the a weights can overfit on the training data.
Formally, the bilevel optimization procedure corresponds to:

minﬁ;.dj{f{.’-k(.ﬂ'),ﬁ_],
i
st w (&) =w Lipain(w, &).

As the inner optimization of «L#rain (1. V) can be very expensive, especially
for each new update on o (for each o the loss Lirain Needs to be calculated until

convergence), it would be infeasible to compute the whole w* () each time a is

207

updated. The authors propose an approximation for ’W*(Of), in which the whole inner
optimization is approximated by one inner loop on the training set, and the V. is
multiplied by a chosen ¢ value, which is a user-defined hyperparameter. Therefore,

Val o (w (o), n) =
Valopa(w — eV Lirain(w,a)), x).

Using the finite difference approximation, this is further expanded into:

Valpa(w” (a),a) =

Valpglw ,a)—

. VaLirain(W7 &) — VaLippgin (W0, &)
= Zt s

This approximation leads to a big speedup, reducing the complexity from

O(ler| - [w]) 1o O(la| + [w]). If ¢ = 0, the second part of the equation is completely
discarded, which corresponds to assuming that the current w is the optimal one. From
the experiments, the authors have seen that this choice can contribute to a speedup, but
worse performance. Therefore, the ¢ hyperparameter was chosen to be > (0 in the
experiments.

Even though DARTS performed well on several benchmarks, it has several
flaws which have been identified by subsequent studies [6-8].

=T | /E]
CH - | =f
) o

T L - E

Figure 1.
Improving DARTS in the Selection of the Final Architecture

Wang et al [9] claimed that the magnitude of the architecture weights a does not
necessarily indicate importance in the final architecture. The authors proposed to use a
perturbation-based method to select the final architecture. Instead of selecting the top
connections as done in DARTS, the authors train the super-network with all the
operations until the end (exactly like DARTS), after which they randomly select a pair
of nodes and determine the best connection for them by removing an operation and
tracking the performance drop on the validation set. After the operation is selected, the
network is finetuned for 5 epochs, after which another random node pair is selected,
and the procedure for selecting the best operation is repeated. This entire process
repeats until all the node pairs are processed. Bi et al. [10] identified that DARTS, and
also extensions such as PC-DARTS [3] or P-DARTS [16] which we describe later,
suffer from instability. Several trials of the same experiment lead to very different final
architectures, also with a very different final performance. The authors proposed to

208

bridge the gap between the super-network training and the final sub-network selection
with an amended hessian trick, which approximates the second level derivative for the
architecture parameters more accurately. They claim that the approximation in the bi-
level optimization in DARTS causes big instabilities and accumulates errors through
time, and the amended hessian is shown to perform better and lead to more stable
architectures. The authors also unify the hyperparameters used in the search and final
full training procedure, to further bridge the gap between the two phases. With the
complete approach, the network reaches stability and does not have the none
connections dominating the final cell structure. Liu et al. [2] have chosen to ignore the
none connections in the original DARTS algorithm, but that issue is avoided by
applying the amended gradient estimation.

Improving DARTS Through the Use of Single-Level Optimization

Hou and Jin [11] demonstrated that bi-level optimization and the separate update
of architecture parameters and weights causes the non-learnable parameters to take
over the learnable ones. This causes most of the final architectures to consist of either
none connections or skip_connections. The authors re-evaluated the decision of
considering bi-level optimization in DARTS, reverting back to a single-level
optimization procedure. They also point out that the learning rate of the architecture
parameters plays a big role in the final architecture, and a large learning rate can lead to
architectures that feature many non-learnable parameters. Finally, the authors used a
sigmoid() activation function instead of a softmax() to diminish the bias caused by non-
learnable parameters. Experiments on the NAS-Bench-201 benchmark [4] demonstrate
that this approach can lead to very promising results.

To optimize the search time, the algorithm stops as soon as the size of the model
(i.e., the number of parameters) drops below the threshold of the expected model size.
Li et al [12] proposed to use mirror descent with a single-level objective, instead of a
bilevel objective for a neural architecture search. The authors claim that it is more
beneficial to treat the architecture weights as learned parameters instead of
hyperparameters. Empirical results show that this approach outperformed the state-of-
the-art solutions at the time, on the DARTS search space.

In our experiments, we have used single-level optimization as well. Yet, unlike
other studies where the authors used sigmoid() or softmax() activation functions for the
architecture weights, we have used the recently proposed entmax() function to promote
sparsity in the connections.

Network Pruning and Other Model Adjustment Strategies for DARTS

The main flaw in DARTS pointed out by Chen et al [6] is the gap between the
search phase and the final evaluation phase. During the search phase, a smaller
architecture is used with a smaller number of layers, while for the final evaluation, the
number of layers/cells is increased drastically. That causes a big discrepancy between
the search and final evaluation procedures.

In P-DARTS, Chen et al [6] proposed to gradually increase the number of cells
in the search procedure, to gradually match the final evaluation scenario. DARTS [2]
uses 8 cells for training and 20 cells for the final evaluation. P-DARTS proposed to
gradually increase the number of cells, starting from 5, then setting the number to 11,
then to 17, and finally doing the evaluation on a 20 cell network.

In their experiments, Chen et al [6] also noticed that with the increase of the
depth of the network, the number of skip-connections dominates the architecture. To
overcome that, they add dropout on top of the skip_connect operation, and decrease the

209

dropout probability gradually. Moreover, the authors constrained the number of skip-
connections to a fixed number M in the final architecture. The value of M is another
hyperparameter tuned by the user. Laube and Zell [13] proposed to prune bad
candidates in a DARTS super-network, replacing them with new more promising ones.
The authors claim that learnable operations are more difficult to tune, and the network
needs to be trained for several epochs with frozen architecture weights so that the
learnable parameters become competent with non-learnable ones. To expand the
architecture, the authors introduce morphisms for all the operations used in the
connections:
e For convolutions, expanding the kernel size by initially padding the kernel
with zeros;
e Increase the channel count of convolutions by initially setting the weights to
zZeros;
Inserting new layers with nonlinearities;
Decreasing the kernel size by keeping only the central part;
Increasing or decreasing the dilation size in dilated convolutions.

For each morphing stage, they artificially keep at least one convolution, in order
to have learnable operations. The whole procedure takes 100 epochs to finish and
demonstrates good results in terms of the speed of convergence and the number of new
operations added to the search space. One of the drawbacks of DARTS noted by Noy
et al. [14], is the discrete procedure of extracting the final architecture from the
architecture weights. With ASAP, Noy et al [14] proposed to extract the final
architecture in a continuous manner. The authors suggest using a combination of an
annealing schedule and a pruning policy, which guarantees that the pruning will not
affect the quality of the final cell. To allow a fair competition for the learnable
parameters, they also fix the architecture weights for several epochs at the beginning.
When doing the pruning of the network, the connections are removed if their weights
become lower than a threshold. The threshold T at time t follows a designed schedule
with annealing. The search procedure stops when all the node pairs have only a single
connection operation.

Other DARTS Improvements

DARTS+ [15] demonstrated that DARTS easily falls into a performance
collapse, in which all the learnable connections get dominated by non-learnable
operations when trained for long enough. The authors claim that the collapse happens
because of overfitting in the bi-level optimization of the DARTS architecture weights.
DARTS+ uses two early stopping strategies to prevent performance collapse. The first
technique states that the search procedure needs to be stopped as soon as there exists a
node pair for which the operations do not change their order for N epochs. The second
method stops the training as soon as there are two or more skip-connections in a
normal cell. Chu et al [16] identified that skip-connections in DARTS have an unfair
advantage over all the other operations. The authors proposed to eliminate that
advantage by adding an auxiliary skip connection from the input directly to the output.
The weight of the auxiliary connection decays as the search procedure approaches the
end. The same authors also proposed using a sigmoid() activation function to enforce
collaboration between operations, instead of competition through softmax(). Yet, these
changes alone do not solve the problems of DARTS, as there is a big gap between the
search phase and the final architecture selected for the full training phase. To be able to

210

select the final architecture, the authors also change the loss function to a zero-one loss,
to further stimulate the architecture weights to take values of either 0 or 1. To reduce
the memory footprint Xu et al [3] proposed to use channel regularisation, where the
model selects only the top 1 /K channels from the convolutional feature maps to reduce
the memory footprint K times. The selected feature maps are used for node
computations, while the others are propagated directly to the output of the node. That
resulted in a lower memory footprint and thus a bigger batch size could be used
improving the stability of the architecture search. As on each iteration, some random
set of channels is selected, which can affect the optimal connectivity determined by
them and make it unstable. To address that issue the authors propose another weighting
of softmaxi (Bi,j) for each node i that gets inputs from nodes j. That B weight is aimed
to weigh the inputs and add more stability to the optimal connectivity between nodes.
These optimizations helped to perform a neural architecture search on a single GTX
1080 Ti in only 0.1 GPU-days for CIFAR10 and 3.8 GPU-days for ImageNet datasets.

An Experimental Analysis on DARTS

Figure 2.
This section presents a detailed experimental analysis on the limitations of
DARTS. The analysis was conducted with standard datasets in the area, using the
search spaces from the original DARTS publication [2], and also from NAS-Bench-
201 [4].
Experimental Setup
As the NAS problem implies a search for an architecture, there are two phases in
all the experiments. The first is the search phase, where the aim is to find a good
architecture. The second is the full training phase, where the aim is to evaluate the
architecture. The final full training phase uses the default train/test split of the dataset,
while the search phase uses only the train split, so that the approach does not overfit the
validation set. There are two search spaces on which we evaluate and report the results.
The DARTS search space contains 8 different operation types, and the NAS-Bench-
201 search space features 5 operation types. To fit the NAS-Bench-201 [4] settings, we
use 17 layers instead of 8 during the search phase. All the experiments were conducted
with a fixed hyperparameter set following Liu et al [2]. To be comparable to DARTS,
we use the default hyperparameters for all the aspects, except the sparsity and pruning
of the network. For the NAS-Bench-201 experiments, we also change the depth of the
network to fit the experimental setup of NAS-Bench-201 [4].
211

As some experiments incorporate pruning, the search procedure for those is
drastically accelerated, opening space for searching for more epochs in the same
amount of time. We stopped the search procedure at approximately the same wall-
clock time, which was required to complete the search procedure in standard DARTS
settings, setting the number of epochs to 200.

In our experimental setup, we used popular datasets in the field of NAS. More
specifically, we have concentrated on the CIFAR-10 [17] and CIFAR-100 [18]
datasets. Both of these are computer vision benchmarks containing images from
different classes, where models are tasked with classifying each image into a
corresponding class. The CIFAR-10 dataset consists of 60000 colored images with a
size of 32 x 32. The training split consists of 50000 images, while the test split consists
of 10000. There are 10 classes in the dataset: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. All the classes are mutually exclusive. The CIFAR-100
dataset is similar to CIFAR-10, but contains 100 different classes. For each class, there
are 500 training images and 100 testing ones, colored and with a size of 32 x 32. We
did not consider experiments on the ImageNet [19] dataset, due to the large amount of
compute needed to process it. Even though some approaches for NAS have used the
ImageNet dataset, these studies have also reported their results on CIFAR-10 and
CIFAR-100, and thus comparing this work with others is possible.

Analysis of the DARTS Search Procedure

Figure 3.

In the DARTS search phase, the normal cell is the main contributor to the final
performance of the model. Naturally, most prior work has focused on fixing the issues
in the normal cell [8, 11, 15, 16, 20], and we also concentrate on the analysis of the
normal cell in vanilla DARTS. Figure 2 illustrates the change of architecture weights
throughout the training epochs, in an initial experiment with vanilla DARTS over
CIFAR-100. The weights are plotted after applying the softmax () activation on the
weights, as the values are used after the softmax() when multiplied by their
corresponding operations. When analyzing the final configuration of the architecture
weights, the none connections are the dominant ones across all the node connections.
For some node pairs, the weights of other connections are so small that the none
connection contributes to most of the output of that node.

Liu et al [2] have simply chosen to ignore the none connections as a whole,
when determining the final architecture. The DARTS algorithm picks the best
connection per node pair after ignoring the none connections, and keeps only 2
connections per node (i.e. node 2 gets 2 inputs, node 3 gets 2 inputs, node 4 gets 2
inputs, and node 5 gets 2 inputs). This results in an unfair architecture choice, as most

212

of the connections have a very small impact on the output of a node over the last few
epochs of the search phase. In the example of Figure 2, none of the connections for the
node pair 4 — 5, for instance, is better than others to be considered for the final
architecture. Yet, DARTS considers the top connection out of those as an operation in
the final architecture, despite the fact that all of them are very close to each other and
have a weight of almost 0. In sum, numerically picking the top connection while
ignoring the none operation can lead to other operations being chosen while they are
not significantly better in terms of their weights.

Analysis of the Super-Network Structure

The performance of the architecture search also depends on the architecture of
the super network at the search phase. In the original DARTS search space, the super
network consists of 3 blocks of two normal cells, followed by a reduction cell, which is
followed by a softmax() normalization layer. In total there are 8 cells (i.e. 6 normal
cells and 2 reduction ones). In the NAS- Bench-201 settings, the network is deeper and
has 3 blocks of 5 normal cells, followed by a reduction cell and summing up to 17 cells
in total. The depth of the super network plays a crucial role in the importance of
operations. Several studies [15, 16] have demonstrated that deep super-networks have
higher chances of having more skip-connections in the final architecture. For deep
networks, it is more important to pass the extracted information from the initial layers
to the final ones. This promotes bigger weights for skip connections compared to other
operations. It should also be noted that, in the standard DARTS procedure, the super-
network keeps all the operations up until the very end of the search procedure.
Therefore, the operations keep contributing to the output of the cell, despite not having
a large weight to be considered in the final architecture. Therefore, the whole final
architecture, when ignoring the none connections, often turns into using skip
connections for all cases, as shown in the example from Figure 4.

In sum, deep networks can prioritize skip connections over other operations
when the super network is deep enough. This can lead to degenerate final architectures,
featuring only skip-connections in the normal cells.

Heuristics to Extract the Final Neural Network Architecture

There are several heuristic rules in the DARTS search procedure, for instance
for extracting the final architecture from the super-network. Most of the rules work
well, even though they contradict the idea of fully automated NAS. One of these rules
is the number of nodes in a cell, which is selected to be 4 in DARTS (+ 2 nodes from
the previous two cells). Another example is the rule that every node is connected to all
its previous ones (e.g., node 4 is connected to nodes 0, 1, 2, and 3). It was assumed that
the none connection should remove the unnecessary connections, but the none
connection was ignored in the vanilla DARTS [2]. Lastly, the discretization procedure,
where the final architecture is extracted from the super-network, follows the rule of 2
connections per node. In the original DARTS settings, each node in the cell has only 2
inbound connections, and thus node 4 is initially connected to nodes 0, 1, 2, and 3, but
in the final architecture it is only connected to two of them. Unlike the first two rules,
the final one is a hyperparameter that needs to be tuned by the end-user.

Summarizing the Pitfalls of DARTS

With basis on the aforementioned experiments and the prior work in the area, it
can be concluded that there are several issues in the DARTS procedure which affect its
performance:

213

The architecture weights for none connections overwhelm the rest of the
architecture, while the remaining operations do not have large enough margins
to have a numerically significant advantage over others.

Deep super-network architectures collapse to having all skip_connect
operations.

There are many handcrafted heuristics built into DARTS, for instance used to
extract the final architecture after the search phase.

There is a big gap between the search process and the final architecture

Differentiable Neural Architecture Search with Sparsity and Pruning

By analyzing the pitfalls of DARTS, we propose several methods for fixing

each of them.

To avoid model collapse to having all non-learnable none connections, we
propose to use a single-level optimization procedure.

To avoid the collapse to a degenerate network having all skip_connect
operations, and also to bridge the gap between the super-network used in the
search phase and the final architecture, we propose to prune the operations
which do not contribute to the final output.

We use a-entmax [21] to promote sparsity in the architecture weights, instead
of the standard softmax() activation.

To avoid having the constraint of only two connections per node, we select all
the inbound connections for the nodes that end up with a weight different from
zero.

Figure 5.
Through a-entmax [21], small weights are more prone to becoming zeros, and

bigger ones grow faster. This effect was used to create sparse architecture weights. As
the aim is to pick at most one final operation per node pair, a-entmax can be used to
highlight and accelerate the process of picking the top connections. Unlike other
studies where the authors pick a threshold to remove a connection [17,14], we get rid
of the heuristic choice and remove only the connections which become 0 after the a-
entmax activation is applied. This also speeds up the search procedure considerably.
Formally, a-entmax [21] corresponds to computing:

214

a-entmax(z), ap z+ Halp).

where o is the sparsity parameter, A° represents the probability distribution over
d possible choices, z is the input feature vector, and H,(p) is represented by:

—Yipilogp;, ifa =1,

where the case of a = 1 is the Gibbs-Boltzmann-Shannon entropy. For values of a that
are larger than one, H,(p) results in a sparser probability vector. Figure 5 demonstrates
the a-entmax() function for several values of a. The case a = 1 corresponds to the
softmax() function, which is smooth, while for bigger a values the function becomes
more rigid and a larger span of values is turned into either 0 or 1. Despite the interest in
using a-entmax, initial tests replacing the softmax() activation showed that similarly to
vanilla DARTS, most of the connections still got dominated by none connections,
while the rest are just skip_connections. Assuming that the bi-level optimization
favours the none connection and the skip_connect, as pointed out by Dong and Yang
[4], we combined the use of a-entmax with the use of single-level optimization.
Moreover, during the search phase, we prune connections whose weights become zero,
removing them from subsequent optimization steps. We analyzed the performance of
single-level optimization on the DARTS search space, with o-entmax activation
function with the sparsity parameter set to 3, and pruning weights when they decline to
0. Figure 6 presents the evolution of the architecture weights throughout the search
epochs. The final architecture extracted from this figure has both skip_connect, none,
max_pool, and sep_conv operations. Pruning the weights which have a small impact on
the final output of a node helps in minimizing the gap between the search phrase and
the full-training phase. Our tests showed that, as in the original DARTS, the final
architecture has at most a single connection per node pair, and removing the low
scoring operations helps in bridging the gap between the final architecture and the
intermediate architecture obtained in the search phase. The other operations, with
weights above zero, do not get diminished by an overwhelming number of less
important operations contributing to the final output. When using single- level
optimization, the none connections do not dominate the whole node pair operation
choice, letting other operations demonstrate their usefulness. Note that the final
architecture is not degenerate, compared to the one present in bi-level optimization
case (i.e., compare Figures 4 and 9). The final architecture also has more clear
dominant connections, compared to the ones present when using softmax with single-
level optimization. In sum, through the proposed ideas, the search procedure is more
stable and results in a well distinguishable dominant operation per node pair (e.g.,
experiments with different random seeds have resulted in a similar final architecture).
Empirical results obtained from these architectures are demonstrated in the next section
to validate the proposed ideas.

— Y (p.—p"), ifa 1

215

Figure 6.

Experimental Results

Most of our experiments were conducted in the DARTS search space with the
experimental setup following Liu et al [2], although we also performed some tests over
the NAS-Bench-201 settings [4]. To understand the contribution of each new idea, we
present the results separately for single-level optimization, for a-entmax with pruning,
and for the combination of a-entmax with pruning and single-level optimization. Table
1 summarizes the results obtained on both the DARTS and NAS-Bench-201 search
spaces. Both the CIFAR-10 and CIFAR-100 datasets were used to compare the
performance of different approaches. The table also includes results reported in other
studies [2, 3, 6-8, 13, 16]. Moreover, we have re-run the experiments for the vanilla
DARTS, to report the results on both benchmark datasets and the two search spaces. In
our results, the bi-level optimization outperforms the single-level optimization. We can
also see that a-entmax with sparsity set to 2 does not lead to good performance, but the
a-entmax with sparsity 3 and pruning, together with bi-level optimization, outperforms
vanilla DARTS. We suspect that 2-entmax worse performance is due to many
redundant connections still remaining in the cell during the search phase, and therefore
overwhelming the important connections. Using single-level optimization with a-
entmax for sparsity and pruning outperforms all the other techniques on the DARTS
search space, implying that the proposed technique actually contributes to better
results. The experiments on NAS-Bench-201 demonstrate that our approach does not
converge to having all skip_connections and performs well on both the CIFAR-10 and
CIFAR-100 datasets. The results of DARTS for the NAS-Bench-201 search space
reported by Dong and Yang [4] have either all skip_connections or none operations as
they keep all the top connections obtained in the search process. In sum, the proposed
method of applying sparsity to the network and pruning the weights that do not
contribute to the final output while also using a single-level optimization shows to
perform quite well on both DARTS and NAS-Bench-201 search spaces. Experiments
on both CIFAR-10 and CIFAR-100 demonstrate that our method can outperform most
of the methods while using the same setup as in vanilla DARTS, without any
hyperparameter tuning.

216

Conclusions and Future Work

Differentiable neural architecture search is a promising approach to learn
complex neural architectures without requiring an enormous amount of computational
power. We performed an in-depth analysis of the original DARTS method, which
helped in understanding how each part contributes to the final output and how to
improve several of its aspects. We also proposed a method which uses single-level
optimization with the pruning of weak connections, together with a-entmax activations
for promoting sparsity in the architecture weights. The experimental results
demonstrate the usefulness of the presented ideas. Despite the interesting results,
several aspects should be further analyzed in the future. One is to assess the
performance of the proposed method on other search spaces, including recurrent cell
structures and transformer networks. Instead of designing transformer cells by hand,
several options of automating that task through NAS can be explored. Another area
that would be interesting to investigate is the effect of initialization of the network
weights on the final architecture, and if the initialization could be improved. We have
done several experiments by initializing the DARTS weights using unsupervised
methods. The preliminary results were not very useful, but we have not pursued them
in much detail, therefore some improvement can be made to the speed and quality of
DARTS through initialization. One idea that would be interesting to experiment with is
to try progressively increasing the sparsity of the network. In our experiments we have
fixed the sparsity parameter of the a-entmax, but starting from a dense network and
progressively increasing the sparsity enforcement can benefit the final result.

DARTS NAS-Bench-201
Model CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
DARTS' [11,13] 97.24 - 54.30F 15.61%
DARTS-' [26] 97.37 82.49 93.80 71.53
PC-DARTS' [12] 97.43 - - -
P-DARTS' [16] 97.50 84.08 - -
PR-DARTS? [23] 97.26 82.63 - -
GOLD-NASH [18] 97.23 - - -
MiLeNAS' [17] 97.49 - - -
Single-level DARTS [21] - - 94.36 73.51
GAEAT [22] 97.50 - 94.10 72.60
ASAPT [24] 98.32 - - -
DARTS+PT [19] 97.39 - - -
Vanilla DARTS" (re-run) 97.24 80.85 97.34 81.40
Single-level DARTS! 95.99 79.80 - -
Single-level DARTS? - - - -
Single-level DARTS* - - - -
2-entmax, prune’ 97.24 73.01 - -
3-entmax, prune’ 97.35 §2.57 - -
2-entmax, prune, single-levelf 97.42 82.64 - -
3-entmax, prune, single-level¥ 97.58 82.97 97.68 81.75

Table 1.

217

References

218

1.

10.

11.

12.

13.

14.

Zhu, H.; Zhang, H.; Jin, Y. From federated learning to federated neural
architecture search: A survey. Complex & Intelligent Systems 2021, 7, 639-
657.

Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable architecture search.
arXiv preprint arXiv:1806.09055 2018.

Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.J.; Tian, Q.; Xiong, H. PC-

DARTS: Partial channel connections for memory-efficient architecture search.
arXiv preprint arXiv:1907.05737 2019. Appl. Sci. 2022, 1, 0 16 of 16

Dong, X.; Yang, Y. NAS-Bench-201: Extending the scope of reproducible
neural architecture search. arXiv preprint arXiv:2001.00326 2020.

Ren, P.; Xiao, Y.; Chang, X.; Huang, P.Y.; Li, Z.; Chen, X.; Wang, X. A
comprehensive survey of neural architecture search: Challenges and solutions.
ACM Computing Surveys 2021, 54, 1-34.

Chen, X.; Xie, L.; Wu, J.; Tian, Q. Progressive differentiable architecture
search: Bridging the depth gap between search and evaluation. In Proceedings
of the Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019.

He, C.; Ye, H.; Shen, L.; Zhang, T. Milenas: Efficient neural architecture
search via mixed-level reformulation. In Proceedings of the Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

Bi, K.; Xie, L.; Chen, X.; Wei, L.; Tian, Q. GOLD-NAS: Gradual, one-level,
differentiable. arXiv preprint arXiv:2007.03331 2020.

Wang, R.; Cheng, M.; Chen, X.; Tang, X.; Hsieh, C.J. Rethinking architecture
selection in differentiable nas. arXiv preprint arXiv:2108.04392 2021.

Bi, K.; Hu, C.; Xie, L.; Chen, X.; Wei, L.; Tian, Q. Stabilizing DARTS with
amended gradient estimation on architectural parameters. arXiv preprint
arXiv:1910.11831 2019.

Hou, P.; Jin, Y. Single-level Optimization For Differential Architecture
Search. arXiv preprint arXiv:2012.11337 2020.

Li, L.; Khodak, M.; Balcan, M.F.; Talwalkar, A. Geometry-aware gradient
algorithms for neural architecture search. arXiv preprint arXiv:2004.07802
2020.

Laube, K.A.; Zell, A. Prune and Replace NAS. In Proceedings of the
Proceedings of the IEEE International Conference On Machine Learning And
Applications, 2019.

Noy, A.; Nayman, N.; Ridnik, T.; Zamir, N.; Doveh, S.; Friedman, I.; Giryes,
R.; Zelnik, L. ASAP: Architecture Search, Anneal and Prune. In Proceedings
of the Proceedings of the International Conference on Artificial Intelligence
and Statistics, 2020.

15.

16.

17.

18.

19.

20.

21.

Liang, H.; Zhang, S.; Sun, J.; He, X.; Huang, W.; Zhuang, K.; Li, Z.
DARTS+: Improved differentiable architecture search with early stopping.
arXiv preprint arXiv:1909.06035 2019.

Chu, X.; Wang, X.; Zhang, B.; Lu, S.; Wei, X,; Yan, J. DARTS-: robustly
stepping out of performance collapse without indicators. arXiv preprint
arXiv:2009.01027 2020.

Krizhevsky, A.; Nair, V.; Hinton, G. CIFAR-10 (Canadian institute for
advanced research). URL http://www. cs. toronto. edu/kriz/cifar. html 2010, 5,
4,

Krizhevsky, A.; Nair, V.; Hinton, G. CIFAR-100 (Canadian Institute for
Advanced Research). URI: https://www. cs. Toronto. edu/kriz/cifar. html
2014.

Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-
scale hierarchical image database. In Proceedings of the Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2009.

Chu, X.; Zhou, T.; Zhang, B.; Li, J. Fair darts: Eliminating unfair advantages
in differentiable architecture search. In Proceedings of the Proceedings of the
European Conference on Computer Vision, 2020.

Peters, B.; Niculae, V.; Martins, A.F. Sparse Sequence-to-Sequence Models.
In Proceedings of the Proceedings of the Annual Meeting of the Association
for Computational Linguistics, 2019

219

