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1. Introduction

Deriving zero bounds for real and complex zeros of polynomials is a classical

problem that has been proven essential in various disciplines such as engineering,

mathematics, and mathematical chemistry. As indicated, there is a large body

of literature dealing with the problem of providing disks in the complex plane

representing so called inclusion radii (bounds) where all zeros of an univariate

complex polynomial are situated. A review on the location of zeros of polynomials,

where the polynomials can be factored over disks in complex plane can be found in

([13],[8],[17],[16]). In accordance with, the following first result which describes the

inclusion radii where all zeros of an univariate complex polynomial are scattered is

due to Cauchy [3]. All the zeros of a polynomial

P (z) = a0 + a1z + a2z
2 + ...+ anz

n, an 6= 0

lie in the disk

|z| < 1 +M,

where M = max
0≤j≤n−1

∣∣∣ ajan ∣∣∣.
Cauchy type polynomials have been studied extensively in the past more than

one-century. The research associated with this has sprawled into several directions

and generates a plethora of publications for example see ([10], [12], [18], [13]).

The research on mathematical objects associated with polynomials and relative

position of their zeros has been active over a period; there are many research papers

published in a variety of journals each year and different approaches have been taken

for different purposes. The present article is concerned with zero free regions and
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particularly the number of zeros of a polynomial in a given disk. The following

result establishes the improvement of above Cauchy bound under the assumption

that the coefficients satisfy monotonicity condition.

If P (z) =
n∑
j=0

ajz
j is a polynomial of degree n with real coefficients such that

an ≥ an−1 ≥ ... ≥ a1 ≥ a0 > 0.

Then P (z) has all its zeros in |z| ≤ 1. This elegant result is known as Eneström-

Kakeya Theorem, (for reference see section 8.3 of [18]). In the literature, there exist

various extensions and generalizations of Eneström-Kakeya Theorem ([2],[5], [6],

[8], [10], [12], [13], [15], [16], [18]). Following analogous result established by Joyal

et al.[10], the foremost and the most cited one after Eneström-Kakeya Theorem

which acts as a generalization of it.

Let

an ≥ an−1 ≥ an−2... ≥ a1 ≥ a0.

Then the polynomial P (z) = anz
n + an−1z

n−1 + ...+ a1z + a0 of degree n has all

its zeros in

|z| ≤ 1

|an|
{an − a0 + |a0|}.

Several years later Aziz and Zargar [2] relaxed the hypothesis in several ways and

among other things proved the following result.

Let

P (z) = a0 + a1z + ...+ anz
n

be a polynomial of degree n with real coefficients such that, for some k ≥ 1 and for

some 0 < ρ ≤ 1 we have

kan ≥ an−1 ≥ ... ≥ ρa0 ≥ 0,

then P (z) has all its zeros in

|z + k − 1| ≤ k + 2a0(1− ρ)
an

.

These results proved to be, each in its own way, enabling the growth of sophisticated

techniques and critical practices are foundational in the development of the geometry

of the zeros of univariate complex polynomial.

Up till now, we have precisely reviewed the regions containing all the zeros of a

polynomial P (z) under restricted coefficients. Since the motivation of this article is

about the zero free regions and the number of zeros for special family of polynomials

and in view of that it is significant to deal with some preliminary results related to
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zero free regions. The following result is due to Zargar [20].

Let P (z) =
n∑
j=0

ajz
j be a polynomial of degree n. If for some real number k ≥ 1

0 < an ≤ an−1 ≤ ... ≤ a1 ≤ ka0,

then P (z) does not vanish in the disk |z| < 1
2k−1 .

Generally speaking, the methods and techniques to develop the zero free and zero

containing regions are different and are satisfactory for the readers. The theory on

zero free regions for the univariate complex polynomials has been well established

([20], [9], [1], [4], [11]), while somewhat is known for analytic functions. This article

describes zero free regions for lacunary type polynomials and this approach is new

in comparison with previously published material in the study of zero free regions.

Next we move to the number of zeros of a polynomial in a given disk, the following

result concerning the number of zeros of a polynomial in a closed disk can be found

in Titchmarsh’s classic "The Theory of Functions (see [19],page 171, 2nd edition).

Theorem 1.1. Let F (z) be analytic in |z| ≤ R. Let |F (z)| ≤ M in |z| ≤ R and

suppose F (0) 6= 0. Then for 0 < δ < 1, the number of zeros of F (z) in the disk

|z| ≤ Rδ does not exceed

1

log 1
δ

log
M

|F (0)|
.

Regarding the number of zeros of a polynomial in |z| ≤ 1
2 and under the same

Eneström -Kakeya type restrictions on the coefficients. Mohammad [15] used a

special case of Theorem 1.1 in order to establish the following result.

Theorem 1.2. If P (z) =
n∑
j=0

ajz
j is a polynomial of degree n such that

an ≥ an−1 ≥ ... ≥ a1 ≥ a0 > 0,

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1 +
1

log 2
log

an
a0
.

This result has been refined and generalized in different ways (see [5], [7], [8],

[16]). Recently Mir et al. [14] imposed certain conditions on the moduli of coefficients

and among other things of the Lacunary type polynomials P (z) = a0+

n∑
j=µ

ajz
j and

proved the following results.
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Theorem 1.3. Let P (z) = a0+

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where for some t > 0

and some µ ≤ k ≤ n,

tµ|aµ| ≤ ... ≤ tk−1|ak−1| ≤ tk|ak| ≥ tk+1ak+1 ≥ ... ≥ tn−1|an−1| ≥ tn|an|

and |arg aj−β| ≤ α ≤ π
2 for µ ≤ j ≤ n, for some real α and β. Then for 0 < δ < 1,

the number of zeros of P (z) in |z| ≤ δt does not exceed
1

log 1
δ

log
M
|a0|

,

where M = 2|a0|t + (|aµ|tµ+1 + |an|tn+1)(1 − cosα − sinα) + 2|ak|tk+1 cosα +

2

n∑
j=µ

|aj |tj+1 sinα.

Theorem 1.4. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 and some k with

µ ≤ k ≤ n,

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn.

Then for 0 < δ < 1, the number of zeros of P (z) in |z| ≤ δt does not exceed
1

log 1
δ

log
M
|a0|

,

whereM = 2(|α0|+|β0|)t+(|αµ|−αµ)tµ+1+2αkt
k+1+(|αn|−αn)tn+1+2

n∑
j=µ

|βj |tj+1.

Theorem 1.5. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 ,for some k with

µ ≤ k ≤ n, we have

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn,

and for some µ ≤ l ≤ n, we have

tµβµ ≤ ... ≤ tl−1αl−1 ≤ tlβl ≥ tl+1βl+1 ≥ ... ≥ tn−1βn−1 ≥ tnβn.

Then for 0 < δ < 1, the number of zeros of P (z) in |z| ≤ δt does not exceed
1

log 1
δ

log
M
|a0|

,

where

M = 2(|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1+

+2(αkt
k+1 + βlt

l+1) + (|αn| − αn + |βµ| − βµ)tn+1.
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2. Main results

The purpose of this paper is to obtain zero free regions for the lacunary type

polynomials whose coefficients satisfy certain monotonicity conditions. We shall also

establish the annular region so that number of zeros of P (z) in this region does not

exceed any given real number. Also the parameters can be adapted appropriately

to the intensity required. In fact we prove the following results.

Theorem 2.1. Let P (z) = a0+

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where for some t > 0

and some µ ≤ k ≤ n,

tµ|aµ| ≤ ... ≤ tk−1|ak−1| ≤ tk|ak| ≥ tk+1|ak+1| ≥ ... ≥ tn−1|an−1| ≥ tn|an|

and |arg aj − β| ≤ α ≤ π
2 for µ ≤ j ≤ n, for some real α and β. Then no zero of

P (z) lies in

|z| < t2|a0|

|a0|t+ (|aµ|tµ+1 + |an|tn+1)(1− sinα− cosα) + 2|ak|tk+1 cosα+ 2

n∑
j=µ

|aj |tj+1 sinα

.

Theorem 2.1 in conjunction with Theorem 1.3, immediately leads to the following

result.

Corollary 2.1. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where for some

t > 0 and some µ ≤ k ≤ n,

tµ|aµ| ≤ ... ≤ tk−1|ak−1| ≤ tk|ak| ≥ tk+1ak+1 ≥ ... ≥ tn−1|an−1| ≥ tn|an|

and |arg aj−β| ≤ α ≤ π
2 for µ ≤ j ≤ n, for some real α and β. Then for 0 < δ < 1,

the number of zeros of P (z) in t2|a0|
M1

≤ |z| ≤ δt does not exceed

1

log 1
δ

log
M
|a0|

,

where

M = 2|a0|t+(|aµ|tµ+1+|an|tn+1)(1−cosα−sinα)+2|ak|tk+1 cosα+2

n∑
j=µ

|aj |tj+1 sinα

M1 = |a0|t+(|aµ|tµ+1+|an|tn+1)(1−sinα−cosα)+2|ak|tk+1 cosα+2

n∑
j=µ

|aj |tj+1 sinα.

Notice that when t = 1 in Theorem 2.1, it produces the following result.

Corollary 2.2. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where for some

µ ≤ k ≤ n.
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Theorem 2.2. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 and some k with

µ ≤ k ≤ n,

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn.

Then no zero of P (z) lies in

|z| < t2(|α0|+ |β0|)

(|α0|+ |β0|)t+ (|αµ| − αµ)tµ+1 + 2αktk+1 + (|αn| − αn)tn+1 + 2

n∑
j=µ

|βj |tj+1

.

On combining Theorem 2.2 and Theorem 1.4, we get the following result.

Corollary 2.3. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 and some k with

µ ≤ k ≤ n, we have

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn.

Then for 0 < δ < 1, the number of zeros of P (z) in t2(|α0|+|β0|)
M2

≤ |z| ≤ δt does not

exceed
1

log 1
δ

log
M
|a0|

,

where

M = 2(|α0|+ |β0|)t+ (|αµ| − αµ)tµ+1 + 2αkt
k+1 + (|αn| − αn)tn+1 + 2

n∑
j=µ

|βj |tj+1

and

M2 = (|α0|+ |β0|)t+ (|αµ| − αµ)tµ+1 + 2αkt
k+1 + (|αn| − αn)tn+1 + 2

n∑
j=µ

|βj |tj+1.

Taking t = 1 in Theorem 2.2, we get the following result.

Corollary 2.4. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some µ ≤ k ≤ n, we have

αµ ≤ ... ≤ αk−1 ≤ αk ≥ αk+1 ≥ ... ≥ αn−1 ≥ αn.

Then P (z) does not vanish in

|z| < (|α0|+ |β0|)

(|α0|+ |β0|) + (|αµ| − αµ) + 2αk + (|αn| − αn) + 2

n∑
j=µ

|βj |
.
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Finally, we put the monotonicity conditions on the real and imaginary parts of

the coefficients of P (z) = a0 +

n∑
j=µ

ajz
j in order to obtain zero free region and an

annular region onwards. More precisely, we prove the following results.

Theorem 2.3. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 ,for some k with

µ ≤ k ≤ n,

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn

and for some µ ≤ l ≤ n,

tµβµ ≤ ... ≤ tl−1αl−1 ≤ tlβl ≥ tl+1βl+1 ≥ ... ≥ tn−1βn−1 ≥ tnβn.

Then P (z) does not vanish in

|z| < t2(|α0|+ |β0|)
(|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1 + 2(αktk+1 + βltl+1) + k tn+1

.

where k = |αn| − αn + |βn| − βn.

Theorem 2.3 in conjunction with Theorem 1.5 yields the following result.

Corollary 2.5. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 ,for some k with

µ ≤ k ≤ n,

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn

and for some µ ≤ l ≤ n,

tµβµ ≤ ... ≤ tl−1αl−1 ≤ tlβl ≥ tl+1βl+1 ≥ ... ≥ tn−1βn−1 ≥ tnβn.

Then for 0 < δ < 1, the number of zeros of P (z) in t2(|α0|+|β0|)
M3

≤ |z| ≤ δt does not

exceed
1

log 1
δ

log
M
|a0|

,

where

M = 2(|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1

+ 2(αkt
k+1 + βlt

l+1) + (|αn| − αn + |βµ| − βµ)tn+1,

M3 = (|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1

+ 2(αkt
k+1 + βlt

l+1) + (|αn| − αn + |βn| − βn)tn+1.
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Here it is interesting to note that Theorem 2.3 gives us several corollaries under

the monotonicity conditions on real and imaginary parts. Taking t = 1 in Theorem

2.3, we get the following result.

Corollary 2.6. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some k with µ ≤ k ≤ n, we have

αµ ≤ ... ≤ αk−1 ≤ αk ≥ αk+1 ≥ ... ≥ αn−1 ≥ αn

and for some µ ≤ l ≤ n,

βµ ≤ ... ≤ αl−1 ≤ βl ≥ βl+1 ≥ ... ≥ βn−1 ≥ βn.

Then no zero of P (z) lies in

|z| < (|α0|+ |β0|)
(|α0|+ |β0|) + (|αµ| − αµ + |βµ| − βµ) + 2(αk + βl) + (|αn| − αn + |βn| − βn)

.

Fix t = 1 and k = l = n in Theorem 2.3, we immediately obtain the following

result.

Corollary 2.7. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n such that

αµ ≤ ... ≤ αn−1 ≤ αn

and

βµ ≤ ... ≤ βn−1 ≤ βn.

Then no zero of P (z) lies in

|z| < (|α0|+ |β0|)
(|α0|+ |β0|) + (|αµ| − αµ + |βµ| − βµ) + (|αn|+ αn + |βµ|+ βµ)

.

Set t = 1 and k = l = µ in Theorem 2.3, we get the following result.

Corollary 2.8. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n such that

αµ ≥ ... ≥ αn−1 ≥ αn

and

βµ ≥ ... ≥ βn−1 ≥ βn.

Then no zero of P (z) lies in

|z| < (|α0|+ |β0|)
(|α0|+ |β0|) + (|αµ|+ αµ + |βµ|+ βµ) + (|αn| − αn + |βµ| − βµ)

.
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3. Proofs of theorems

For the proofs of our main results, we need the following auxiliary result.

Lemma 3.1. Let P (z) be a polynomial of degree n. If for some real α and β,

|arg aj −β| ≤ α ≤ π
2 , 0 ≤ j ≤ n and for any t > 0 such that, |aj | ≥ |aj−1|, 0 ≤ j ≤

n, then
∣∣taj − aj−1∣∣ ≤ (t|aj | − |aj−1|)cosα+

(
t|aj |+ |aj−1|

)
sinα.

The above lemma is due to Govil and Rahman [8].

Proof of Theorem 2.1 Consider the polynomial

F (z) =(t− z)P (z) = (t− z)
(
a0 +

n∑
j=µ

ajz
j

)
.

This implies,

F (z) = a0t+

n∑
j=µ

tajz
j − a0z −

n∑
j=µ

ajz
j+1 = a0(t− z) +

n∑
j=µ

tajz
j −

n+1∑
j=µ+1

aj−1z
j

i.e., F (z) = a0(t− z) + taµz
µ +

n∑
j=µ+1

(taj − aj−1)zj − anzn+1 = a0t+R(z), where

R(z) = −a0z + taµz
µ +

n∑
j=µ+1

(taj − aj−1)zj − anzn+1. On |z| = t, we have

|R(z)| =
∣∣∣∣− a0z + taµz

µ +

n∑
j=µ+1

(taj − aj−1)zj − anzn+1

∣∣∣∣
≤|a0|t+ |aµ|tµ+1 +

n∑
j=µ+1

|taj − aj−1|tj + |an|tn+1.

Equivalently,

|R(z)| ≤ t|a0|+ |aµ|tµ+1 +

k∑
j=µ+1

|taj − aj−1|tj +
n∑

j=k+1

|taj − aj−1|tj + |an|tn+1.

Using lemma 3.1, we get

|R(z)| ≤ t|a0|+ |aµ|tµ+1 +

k∑
j=µ+1

{(|aj |t− |aj−1|) cosα+ (|aj |t+ |aj−1|) sinα}tj

+

n∑
j=k+1

{(|aj−1| − |aj |t) cosα+ (|aj |t+ |aj−1|) sinα}tj + |an|tn+1

= t|a0|+ |aµ|tµ+1 +

k∑
j=µ+1

|aj |tj+1 cosα−
k∑

j=µ+1

|aj−1|tj cosα

+

k∑
j=µ+1

|aj |tj+1 sinα+

k∑
j=µ+1

|aj−1|tj sinα+

n∑
j=k+1

|aj−1|tj cosα
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−
n∑

j=k+1

|aj |tj+1 cosα+

n∑
j=k+1

|aj−1|tj sinα+

n∑
j=k+1

|aj |tj+1 sinα+ |an|tn+1.

This gives,

|R(z)| ≤ |a0|t+ |aµ|tµ+1 − |aµ|tµ+1 cosα+ |ak|tk+1 cosα+ |aµ|tµ+1 sinα

+ |ak|tk+1 sinα+ 2

k−1∑
j=µ+1

|aj |tj+1 + |ak|tk+1 cosα− |an|tn+1 cosα+ |ak|tk+1 sinα

+ |an|tn+1 sinα+ 2

n−1∑
j=k+1

|aj |tj+1 sinα+ |an|tn+1 = |a0|t+ (|aµ|tµ+1 + |an|tn+1)

× (1− sinα− cosα) + 2|ak|tk+1 cosα+ 2

n∑
j=µ

|aj |tj+1 sinα =M1.

Applying Schwarz lemma to R(z), we get |R(z)| ≤ M1|z|
t

, |z| ≤ t. Hence

|F (z)| = |a0t+R(z)| ≥ |a0|t− |R(z)| ≥ |a0|t−
M1|z|
t

> 0 for |z| ≤ t,

if |a0|t−
M1|z|
t

> 0. That is, if |z| < t2|a0|
M1

. This shows that F (z) and hence P (z)

has no zero in |z| < t2|a0|
M1

. This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2 We consider

F (z) = (t− z)P (z) = a0(t− z) + taµz
µ +

n∑
j=µ+1

(taj − aj−1)zj − anzn+1.

Equivalently,

F (z) = (α0 + iβ0)(t− z) + (αµ + iβµ)tz
µ +

n∑
j=µ+1

(αjt− αj−1)zj

+ i

n∑
j=µ+1

(βjt− βj−1)zj − (αn + iβn)z
n+1 = (α0 + iβ0)t+R(z).

For |z| = t, we have

|R(z)| ≤(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

n∑
j=µ+1

|αjt− αj−1|tj

+

n∑
j=µ+1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1

= (|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

k∑
j=µ+1

(αjt− αj−1)tj

+

n∑
j=k+1

(αj−1 − αjt)tj +
n∑

j=µ+1

(
|βj |t+ |βj−1|

)
tj + (|αn|+ |βn|)tn+1 =
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= (|α0|+ |β0|)t+(|αµ|−αµ)tµ+1+2αkt
k+1+(|αn|−αn)tn+1+2

n∑
j=µ

|βj |tj+1 =M2.

Applying Schwarz lemma to the polynomial R(z), we get

|R(z)| ≤ M2|z|
t

, for |z| ≤ t.

Hence |F (z)| = |a0t + R(z)| ≥ |a0|t − |R(z)| ≥ |a0|t −
M2|z|
t

> 0, |z| ≤ t, if

|a0|t −
M2|z|
t

> 0, that is, if |z| < t2|a0|
M2

. This shows that F (z) and hence P (z)

has no zero in |z| < t2|a0|
M2

and the proof of Theorem 2.2 is complete. �

Proof of Theorem 2.3 As in the proof of Theorem 2.2,

F (z) =(α0 + iβ0)(t− z) + (αµ + iβµ)tz
µ +

n∑
j=µ+1

(αjt− αj−1)zj

+ i

n∑
j=µ+1

(βjt− βj−1)zj − (αn + iβn)z
n+1 = (α0 + iβ0)t+R(z).

where

R(z) =− (α0 + iβ0)z + (αµ + iβµ)tz
µ +

n∑
j=µ+1

(αjt− αj−1)zj

+ i

n∑
j=µ+1

(βjt− βj−1)zj − (αn + iβn)z
n+1.

For |z| = t, we have

|R(z)| ≤ (|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

n∑
j=µ+1

|αjt− αj−1|tj

+

n∑
j=µ+1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1 = (|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1

+

k∑
j=µ+1

(αjt− αj−1)tj +
n∑

j=k+1

(αj−1 − αjt)tj +
k∑

j=µ+1

(βjt− βj−1)tj

+

n∑
j=k+1

(βj−1 − βjt)tj + (|αn|+ |βn|)tn+1 = (|α0|+ |β0|)t

+ (|αµ| − αµ + |βµ| − βµ)tµ+1 + 2(αkt
k+1 + βlt

l+1)

+ (|αn| − αn + |βn| − βn)tn+1 =M3.

Applying Schwarz lemma to the polynomial R(z), we get

|R(z)| ≤ M2|z|
t

, for |z| ≤ t.
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Hence

|F (z)| =|(α0 + iβ0)t+R(z)| ≥ (|α0|+ |β0|)t− |R(z)|

≥ (|α0|+ |β0|)t−
M3|z|
t

> 0, |z| ≤ t,

if

(|α0|+ |β0|)t−
M3|z|
t

> 0.

That is, if

|z| < (|α0|+ |β0|)t2

M3
.

This shows that F (z) and hence P (z) has no zero in |z| < (|α0|+|β0|)t2
M3

. This

completes the proof of Theorem 2.3. �

4. Examples

Since the present article is concerned with newly developed approach to obtain

the zero free regions and the number of zeros for the lacunary type polynomials in

a given disk. From this point of view, the comparison of the bounds obtained with

the previous bounds appropriately have no scope within this type of study. Instead

of comparing the bounds, we point out few examples which may be helpful to be

examined.

Example 4.1. Let P (z) = 2z5 + 2.5z4 + 4z3 + 3z2 + 2z + 1. Clearly, here µ = 1

and n = 5. We take k = 3, α = π/2 and t = 1. In view of Theorem 2.1 and due to

this type of intensity of parameters the radius of given disk comes out to be 0.0357.

Since the appropriate zeros of P (z) are −0.358+0.9154i, −0.358−0.9154i, 0.0756+
0.8657i, 0.0756− 0.8657i, −0.6853. Then one can see that P (z) does not vanish in

|z| < 0.0357.

Since corollary 2.1.1 is the union of Theorem 2.1 and Theorem 1.3. Under the

same example it is clear that all the zeros of P (z) = 2z5+2.5z4+4z3+3z2+2z+1

lie in |z| ≥ 0.0357. If we set δ = 0.7, the upper bound of the annular region

in corollary 2.1.1 comes out to be 0.7 as t = 1. In this case, we found that the

number of zeros of underlying polynomial P (z) in 0.0357 ≤ |z| ≤ 0.7 does not

exceed 1
log 1

0.7

log(29) ≈ 9.4524. Hence we conclude that P (z) has at most one zero

in 0.0357 ≤ |z| ≤ 0.7 and of course, P (z) has exactly one zero in 0.0357 ≤ |z| ≤ 0.7.

All above discussion demonstrates one thing, which is beauty to say, that the bound

in Theorem 2.1 becomes the lower bound of the annular region in corollary 2.1.1.

Example 4.2. Let P (z) = 2z5+3z4+4z3+2z2+1.5z+1. Clearly, here µ = 1 and

n = 5. Setting k = 3 and t = 1. In view of Theorem 2.2 the radius comes out to be
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0.1111. Numerically the appropriate zeros of P (z) are −0.6193+1.0343i, −0.6193−
1.0343i, 0.2089+0.6804i, 0.2089−0.6804i, 0.6792. It is clear from these zeros that

P (z) does not vanish in |z| < 0.1111.
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