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1. Introduction

In the present paper, we investigate the existence of ground states solutions for a

modified fractional Schrödinger equation with a generalized Choquard nonlinearity

(1.1)

(−4)
s
u+ µV (x)u+ 2

[
(−4)

s
u2
]
u = (Iλ ∗ F (u)) f(u) +

|u|22∗s(β)−2u

|x|β
, x ∈ RN,

where N ≥ 3, s ∈ (0, 1), 0 ≤ β < 2s < N, µ is positive constant, 2∗s(β) =
2(n− β)

n− 2s
is the critical β-fractional Sobolev exponent, V(x) is a given potential, f ∈ C(R,R)

and F ∈ C(R,R) with F (u) =
∫ u

0
f(t)dt, Iλ(x) = |x|−λ is the Rieze potential of

order λ ∈ (0, N) and (−4)s denotes the fractional Laplacian of order s is defined

as

(−4)sϕ(x) = 2 lim
ε→0+

∫
RN\Bε(x)

ϕ(x)− ϕ(y)

|x− y|N+2s
dy, x ∈ RN,

with ϕ ∈ C∞0 (RN) and Bε(x) denotes the ball of RN centered at x ∈ RN and radius

ε > 0.

The study of existence and uniqueness of positive solutions for Choquard type

equations attracted a lot of attention of researchers due to its vast applications

in physical models [1]. Fractional Choquard equations and their applications is

very interesting, we refer the readers to [2] –[11] and the references therein. The

authors in [9], by using the Mountain Pass Theorem and the Ekeland variational

principle obtained the existence of nonnegative solutions a Schrödinger-Choquard-
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Kirchhoff-type fractional p-equation. Ma and Zhang [8] studied the fractional order

Choquard equation and proved the existence and multiplicity of weak solutions. In

[3], the authors investigated a class of Brézis-Nirenberg type problems of nonlinear

Choquard equation involving the fractional Laplacian in bounded domain Ω. Wang

and Yang [12] by using an abstract critical point theorem based on a pseudo-index

related to the cohomological index studied the bifurcation results for the critical

Choquard problems involving fractional p-Laplacian operator:

(1.2)

(−∆)spu = λ|u|p−2u+

(∫
Ω

|u|p
∗
µ,s

|x− y|µ
dy

)
|u|p

∗
µ,s−2u, x ∈ Ω,

u = 0, x ∈ RN \ Ω,

where Ω is a bounded domain in RN with Lipschitz boundary and λ is a real

parameter. Also, in [13] – [15], the authors have studied the existence of multiple

solutions for problem (1.2), when p = 2. For more works on the Brezis-Nirenberg

type results on semilinear elliptic equations with fractional Laplacian, we refer to

[16] – [17] and references therein.

On the other hand, Shao and Wang in [18] established the following Kirchhoff

equations with Hardy-Littlewood-Sobolev critical nonlinearity:

(1.3)

{
−4u+ V (x)u− u4u2 + λ (Iα ∗ |u|p) |u|p−2u = K(x)u−γ , x ∈ RN ,
u > 0, x ∈ RN ,

where α ∈ (0, N), λ > 0 and Iα is a Riesz potential. Under suitable assumption on

K and V , the author obtained the existence of positive solutions for problem (1.3).

Zhang and Ji [19] studied the following problem

(1.4) −4u+ V (x)u− u4u2 = (Iα ∗G(u)) g(u), x ∈ RN ,

where α ∈ (0, N), Iα is a Riesz potential and V : RN → R is radial potential, and

established the existence of ground state solutions for problem (1.4) by using the

variational method. For more results on equations with Hardy-Littlewood-Sobolev

critical nonlinearity and nonlocal fractional problems, we refer to [20] – [31] and

references therein.

Recently, the authors in [32] studied the existence of ground state solutions for

the following modified fractional Schrödinger equations

(−4)
α
u+ µu+ κ

[
(−4)

α
u2
]
u = σ|u|p−1u+ |u|q−1u, x ∈ RN ,

where 0 < α < 1, µ > 0, N ≥ 2, κ > 0, 2 < p+ 1 < q < 2N
N−2α .

Motivated by the above works, in this paper, we would like to study the existence

of ground state solutions for problem (1.1).
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Throughout the paper, we get the following conditions:

(V1) V (x) ≥ 0, V ∈ C(RN ,R) and Ω := int
(
V −1(0)

)
is non-empty with smooth

boundary;

(V2) There exists M > 0 such that meas(x ∈ RN|V (x) ≤M) < ∞, where meas (.)

denotes the Lebesgue measure;

(f1) f ∈ C(R,R), limt→0
f(t)
t = 0;

(f2) limt→∞
f(t)
tq−1 = 0 for some 2N−λ

N ≤ q ≤ 2N−λ
N−2s ;

(f3) There exists α ∈ (4, 22∗s(β)) that 0 < αF (t) < tf(t), for all t ∈ R.
Also, we introduce the following fractional Choquard equation:

(1.5)


(−4)

s
u+ 2

[
(−4)

s
u2
]
u = (Iλ ∗ F (u)) f(u) + |u|22

∗
α(β)−2u
|x|β , x ∈ Ω,

u = 0, x ∈ RN \ Ω,

where Ω is defined in (V1). The main results are as follows:

Theorem 1.1. Let 0 < µ < min{N, 4s}. Assume that (f1)− (f3) and (V1)− (V2)

hold. Then there exists µ∗ > 0 such that (1.1) has a least a ground state solution

for any µ > µ∗.

Theorem 1.2. Under the assumptions of Theorem 1.1, assume that uµn be a

ground state of problem (1.1) with µn → ∞. Then, up to a subsequence, uµn → u

in Hs(RN ) as n→∞. Moreover, u is a ground state solution of problem (1.5).

The paper is organized as follows. In Section 2, we recall some basic definitions

of fractional Sobolev space and Hardy-Littlewood-Sobolev Inequality, and we give

some useful auxiliary lemmas. In Section 3, we give the proof of the main results.

2. Preliminaries

In this section, we present some preliminaries and lemmas that are useful to the

proof to the main results. The fractional Sobolev space Hs(RN ) (0 < s < 1) is

defined by

Hs(RN ) =
{
ψ ∈ L2(RN ) : ‖ (−4)

s
2 ψ‖2 <∞

}
,

with the norm

‖ψ‖Hs(RN ) =
(
‖ψ‖22 + ‖ (−4)

s
2 ψ‖2

) 1
2

,

where

‖ (−4)
s
2 ψ‖ =

(∫∫
R2N

|ψ(x)− ψ(y)|2

|x− y|N+2s
dxdy

) 1
2

.
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The space Ds,2(RN ) is the completion of C∞0 (RN ) with respect to the norm

[ψ]s,2 = ‖ (−4)
s
2 ψ‖.

Let S be the best Sobolev constant

(2.1) S := inf
ψ∈Ds,2(RN )\{0}

‖ψ‖2(∫
RN |ψ|2

∗
s(α)dx

) 2
2∗s (α)

.

Also, define the space

E =

{
ψ ∈ Hs(RN)|

∫
RN
µV (x)ψ2dx < +∞

}
,

with the norm

‖u‖2 =

∫
RN

µV (x)u2dx+

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

Let us recall the following results.

Lemma 2.1. (see [33, Lemma 1]) (E, ||.||) is a uniformly convex Banach space.

Lemma 2.2 ([34]). Suppose that V satisfies (V2) and µ∗ > 0 be a fixed constant.

Then the embedding E ↪→ Lν(RN) is continuous for all µ > µ∗ and ν ∈ [2, 2∗s(β)).

Moreover, for any R > 0 and ν ∈ [1, 2∗s(β)] the embedding E ↪→ Lν(BR(0)) is

compact.

Proof. The proof is similar to that of Lemma 1 in [34], so we omit it here.

Now, we state the following fractional Hardy-Sobolev inequality

Lemma 2.3. ([35, Lemma 2]) Assume that α ∈ [0, 2s] with 2s < N . Then there

exists a positive constant C such that(∫
RN

|u|2∗s(α)

|x|α
dx

) 1
2∗s (α)

≤ C
(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

for every u ∈ Hs(RN ).

Lemma 2.4. (Hardy-Littlewood-Sobolev Inequality, [36, Theorem 4.3]) Suppose

that r, t ∈ (1,∞), λ ∈ (0, N) with
1

t
+

1

r
+
λ

N
= 2.

So there exists a sharp constant C(N,λ, r, t) > 0 such that∫∫
R2N

|ζ(x)|.|η(y)|
|x− y|λ

dxdy ≤ C(N,λ, r, t)‖ζ‖r‖η‖t,

for all ζ ∈ Lr(RN) and η ∈ Lt(RN).

If F ∈ Lt(RN) for some t > 1 with 2
t + λ

N = 2, then by Lemma 2.4,∫∫
R2N

|F (u(x))|.|F (u(y))|
|x− y|λ

dxdy

is well defined.
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We mean by a weak solution of (1.1), any u ∈ E such that∫
RN

(−4)
s
2 u. (−4)

s
2 ϕdx+

∫
RN
µV (x)uϕdx+ 2

∫
RN

(−4)
s
2 u2. (−4)

s
2 uϕdx

=

∫
RN

(Iλ ∗ F (u)) f(u)ϕdx+

∫
RN

|u|22∗s(β)−2u.ϕ

|x|β
dx,

for any ϕ ∈ E. The energy function corresponding to (1.1) is

Iµ(u) =
1

2
[u]2s,2 +

µ

2

∫
RN
V (x)|u|2dx+

1

2
[u2]2s,2−

1

2

∫∫
R2N

F (u(x))F (u(y))

|x− y|λ
dxdy − 1

22∗s(β)

∫
RN

|u|22∗s(β)

|x|β
,

and energy function corresponding to (1.5) is

I0(u) =
1

2
[u]2s,2 +

1

2
[u2]2s,2

− 1

2

∫∫
Ω×Ω

F (u(x))F (u(y))

|x− y|λ
dxdy − 1

22∗s(β)

∫
Ω

|u|22∗s(β)

|x|β
.

Set X :=
{
ζ ∈ E : ζ2 ∈ E

}
with ‖ζ‖X = ‖ζ‖E and

X0 :=
{
ζ ∈ Hs(RN) : ζ2 ∈ Hs(RN), u = 0 a.e. in RN \ Ω

}
.

Now, we show that X 6= ∅. For simplicity, we assume N= 1. Let

u(x) :=


√
| sin(x)| x ∈ [1, 2π],

0 x ∈ R \ [1, 2π].

and

V (x) :=


|x|−1
|x|3 x ∈ R \ (−1, 1),

0 x ∈ (−1, 1).∫∫
R2

|u(x)− u(y)|2

|x− y|1+2s
dxdy =

∫∫
[1,2π]×[1,2π]

|
√
| sin(x)| −

√
| sin(y)||2

|x− y|1+2s
dxdy

≤
∫∫

[1,2π]×[1,2π]

|
√
| sin(x)− sin(y)||2

|x− y|1+2s
dxdy

≤ C1

∫∫
[1,2π]×[1,2π]

1

|x− y|1+2s
dxdy <∞,

where C1 ≥ 0 and ∫
R
µV (x)|u(x)|2dx ≤

∫
R
µV (x)dx <∞,

then u(x) ∈ E. In addition, we have∫∫
R2

|u2(x)− u2(y)|2

|x− y|1+2s
dxdy =

∫∫
[1,2π]×[1,2π]

|| sin(x)| − | sin(y)||2

|x− y|1+2s
dxdy

≤ C2

∫∫
[1,2π]×[1,2π]

1

|x− y|1+2s
dxdy <∞,
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where C2 ≥ 0 and ∫
R
µV (x)|u2(x)|2dx ≤

∫
R
µV (x)dx <∞,

then u2(x) ∈ E and u(x) ∈ X. Then X 6= ∅.
Also, Iµ(u) is well defined on X and I0(u) is well defined on X0. Under the

assumation (V1) asnd (V2), Iµ, I0 are well defined and Iµ, I0 ∈ C1(X,RN ).

Let

J(u) =

∫∫
R2N

|u2(x)− u2(y)|2

|x− y|N+2s
dxdy.

We have

≺ J′(u), v � =
d

dt
J(u+ tv) |t=0=

d

dt

∫∫
R2N

|(u(x) + tv(x))2 − (u(y) + tv(y))2|2

|x− y|N+2s
dxdy

(2.2)

= 2

∫∫
R2N

(
(u(x) + tv(x))2 − (u(y) + tv(y))2

)
|x− y|N+2s

×(2.3) (
2(u(x) + tv(x))v(x)− 2(u(y) + tv(y))v(y)

)
dxdy |t=0

= 4

∫∫
R2N

(
u2(x)− u2(y)

)
(u(x)v(x)− u(y)v(y))

|x− y|N+2s
dxdy.

So by (2.2), we can easily check that〈
I
′

µ(u), %
〉

=

∫∫
R2N

(u(x)− u(y))(%(x)− %(y))

|x− y|N+2s
dxdy +

∫
RN
µV (x)u(x)%(x)dx

+ 2

∫∫
R2N

(u2(x)− u2(y))(u(x)%(x)− u(y)%(y))

|x− y|N+2s
dxdy

−
∫∫

R2N

F (u(y))f(u(x))%(x)

|x− y|λ
dxdy −

∫
RN

|u|22∗s(β)−2u(x)%(x)

|x|β
dx,

for all u, % ∈ X and〈
I
′

0(u), %
〉

=

∫∫
R2N

(u(x)− u(y))(%(x)− %(y))

|x− y|N+2s
dxdy

+ 2

∫∫
R2N

(u2(x)− u2(y))(u(x)%(x)− u(y)%(y))

|x− y|N+2s
dxdy

−
∫∫

Ω×Ω

F (u(y))f(u(x))%(x)

|x− y|λ
dxdy −

∫
Ω

|u|22∗s(β)−2u(x)%(x)

|x|β
dx,

for all u, % ∈ X0.

Lemma 2.5. Assume that (f1) and (f2), we have

(2.4)
∣∣∣∣ ∫

RN

∫
RN

F (u(y))

|x− y|λ
f(u(x))u(x)dxdy

∣∣∣∣ ≤ C([u]4s,2 + [u]2qs,2),

8
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and

(2.5)
∣∣∣∣ ∫

RN

∫
RN

F (u(y))F (u(x))

|x− y|λ
dxdy

∣∣∣∣ ≤ C([u]4s,2 + [u]2qs,2).

Proof. The proof is similar to that of Lemma 2.5 in [37], so we omit it here.

Lemma 2.6. Assume that {un} ⊂ E such that un ⇀ u in E. From (f1), (f2) and

0 < λ < min{N, 4S}, we have∫
RN

(Iλ ∗ F (un))F (un)dx→
∫
RN

(Iλ ∗ F (u))F (u)dx,∫
RN

(Iλ ∗ F (un))f(un)ϕdx→
∫
RN

(Iλ ∗ F (u))f(u)ϕdx.

as n→∞.

Proof. The proof is similar to that of the proof of Lemma 2.6 in [37], so we omit

it here. Set

mµ := inf
u∈Σ

Iµ(u), m0 := inf
u∈Σ0

I0(u),

where

Σ :=
{
u ∈ X \ {0} | < I

′

µ(u), u >= 0
}
, Σ0 :=

{
u ∈ X0 \ {0} | < I

′

0(u), u >= 0
}
.

We know that to prove our main results, we should check that mµ is achieved by a

critical point of Iµ for µ > µ∗.

Lemma 2.7. Σ0 6= ∅.

Proof. Let u0 ∈ X \ {0} with u0 ≥ 0 and κ(t) = ζ
(

tu0

[u0]s,2

)
, where

ζ(u) =

∫∫
Ω×Ω

F (u(y))F (u(x))

|x− y|λ
dxdy.

From (f3), we have
α

t
≤ κ

′
(t)

κ(t)
, ∀ t > 0.

Consequently, by integrating from the above inequality over [1, t[u0]s,2] with t >
1

[u0]s,2
, one can get

ζ(tu0) ≥ ζ
(

u0

[u0]s,2

)
tα[u0]αs,2.

So, we get

I0(t0u0) ≤ t20
2

[u0]2s,2 +
t40
2

[u2
0]2s,2 −

λ

2
ζ(

u0

[u0]s,2
)tα[u0]αs,2,

since α > 4, if t0 → +∞, we have I0(t0u0)→ −∞.

On the other hand,
9
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I0(t0u0) =
t20
2

[u0]2s,2 +
t40
2

[u2
0]2s,2 −

1

2

∫∫
Ω×Ω

F (t0u0(x))F (t0u0(y))

|x− y|λ
dxdy

− t
22∗s(β)
0

22∗s(β)

∫
Ω

|u|22∗s(β)

|x|β
≥ t20

2
[u0]2s,2 +

t40
2

[u2
0]2s,2

− C1

(
t40[u0]4s,2 + t2q0 [u0]2qs,2

)
− C2t

22∗s(β)
0 [u2

0]
2∗s(β)
s,2 ,

which implies that for small t0 > 0, I0(t0u0) > 0. Then, there exists t > 0 such that
d
dt |t0=tI0(tu0) = 0, means, tu0 ∈ Σ0, then we have the conclusion. �

Lemma 2.8. There exists K > 0 such that mµ ≥ K.

Proof. We divide the proof into the following three steps.

Step 1: Σ0 ⊂ Σ and m0 ≥ mµ.

For any u ∈ Σ0, by the definition of Ω, one has∫
RN
µV (x)|u|2dx = 0.

Consequently,

< I
′

µ(u), u >=< I
′

0(u), u >+

∫
RN
µV (x)|u|2dx,

hence, u ∈ Σ and Σ0 ⊂ Σ, Σ 6= ∅. Similarly, we can prove that Iµ(u) = I0(u), and

then we get

mµ = inf
u∈Σ

Iµ(u) ≤ inf
u∈Σ0

Iµ(u) = inf
u∈Σ0

I0(u) = m0.

Step 2: mµ is bounded from below.

From (f3), for any u ∈ Σ, we get

Iµ(u) = Iµ(u)− 1

α
< I

′

µ(u), u >

=

(
1

2
− 1

α

)
[u]2s,2 +

(
1

2
− 1

α

)∫
RN
µV (x)|u|2dx

+

(
1

2
− 2

α

)
[u2]2s,2 −

1

2

∫∫
R2N

F (u(y))F (u(x))

|x− y|λ
dxdy

+
1

α

∫∫
R2N

F (u(y))f(u(x))u(x)

|x− y|λ
dxdy −

(
1

22∗s(β)
− 1

α

)∫
RN

|u|22∗s(β)

|x|β
dx

≥
(

1

2
− 1

α

)
[u]2s,2 +

(
1

2
− 1

α

)∫
RN
µV (x)|u|2dx

+

(
1

2
− 2

α

)
[u2]2s,2 −

1

2

∫∫
R2N

F (u(y))F (u(x))

|x− y|λ
dxdy

10
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+
1

2α

∫∫
R2N

F (u(y))f(u(x))u(x)

|x− y|λ
dxdy −

(
1

22∗s(β)
− 1

α

)∫
RN

|u|22∗s(β)

|x|β
dx(2.6)

=

(
1

2
− 1

α

)
[u]2s,2 +

(
1

2
− 1

α

)∫
RN
µV (x)|u|2dx+

(
1

2
− 2

α

)
[u2]2s,2

−
(

1

22∗s(β)
− 1

α

)∫
RN

|u|22∗s(β)

|x|β
dx,

since α ∈ (4, 22∗s(β)), then ( 1
2 −

1
α ) > 0, ( 1

α −
1

22∗s(β) ) > 0, consequently, Iµ(u) ≥ 0.

This result implies that mµ ≥ 0.

Step 3: mµ have positive uniform bounded from below.

Let {un} be a minimizing sequence of m, then Iµ(un) → m and I
′

µ(un) → 0.

According to the proof of the (2.6), we have

m0 + on(1) ≥ mµ + on(1)

≥
(

1

2
− 1

α

)
[un]2s,2 +

(
1

2
− 1

α

)∫
RN
µV (x)|un|2dx+

(
1

2
− 2

α

)
[u2
n]2s,2

−
(

1

22∗s(β)
− 1

α

)∫
RN

|un|22∗s(β)

|x|β
dx ≥

(
1

2
− 1

α

)
[un]2s,2(2.7)

+

(
1

2
− 1

α

)∫
RN
µV (x)|un|2dx.

Thus

(2.8) m0 + on(1) ≥ mµ + on(1) ≥ C1||un||2,

where C1 = ( 1
2 −

1
α ). From fractional Hardy-Sobolev inequality and lemma 2.5,

there exist two constants C2, C3 > 0 such that

‖un‖2 ≤ ‖un‖2 + [u2
n]2s,2

=

∫∫
R2N

F (un(y))f(un(x))ϕ

|x− y|λ
dxdy +

∫
RN

|un|22∗s(β)−2unϕ

|x|β
dx

≤ C2([un]4s,2 + [un]2qs,2) + C3[un]
22∗s(β)
s,2

≤ C2(‖un‖4 + ‖un‖2q) + C3‖un‖22∗s(β).

So, we may choose a constant C4 > 0 such that

(2.9) ‖un‖2 ≥ C4.

From (2.8) and (2.9), there exist K := C1 × C4 > 0, such that

mµ ≥ ‖un‖2 ≥ K.

Therefore, we have the conclusion. �

11
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3. Proof of the main theorems

In this section, we prove our main results.

Proof of Theorem 1.1. Fix µ > µ∗ and take a sequence {un} ⊂ Σ, that is

Iµ(un) → mµ. Then, by (2.8), {un} is bounded in X. Hence, un ⇀ u, u2
n ⇀ u2 in

E up to subsequence, and thus by Lemma 2.2,
un → u, u2

n → u2 in Lsloc(RN) (1 ≤ s < 2∗s(β)),

un → u, a.e. in RN ,
|un|
|x|β →

|u|
|x|β in Lr(RN, dx

|x|β ) for 2 ≤ r < 2∗s(β) and 0 ≤ β < 2s.

(3.1)

Let ψ ∈ Hs(RN) and we define a linear functional on X as follows

Bψ(ϕ) =

∫∫
R2N

(ψ2(x)− ψ2(y))(ψ(x)ϕ(x)− ψ(y)ϕ(y))

|x− y|N+2s
dxdy, ∀ ϕ ∈ X.

Hence, one has

(3.2) lim
n→∞

Bu(un − u) = 0.

Let ξ ∈ X be fixed and Φυ be the linear functional on X defined by

Φξ(υ) =

∫∫
RN

(ξ(x)− ξ(y))(υ(x)− υ(y))

|x− y|N+2s
dxdy, ∀ υ ∈ X.

Since I
′

µ(un)→ 0, one can get

lim
n→∞

< I
′

µ(un)− I
′

µ(u), un − u >= 0.

Consequently,

o(1) =< I
′

µ(un)− I
′

µ(u), un − u > = Φun(un − u)− Φu(un − u) + 2Bun(un − u)

+

∫
RN
µV (x)|un(x)− u(x)|2dx−

∫∫
R2N

F (un(y))f(un(x))(un(x)− u(x))

|x− y|λ
dxdy

+

∫∫
R2N

F (u(y))f(u(x))(un(x)− u(x))

|x− y|λ
dxdy

−
∫
RN

[
|un|22∗s(β)−2un − |u|22∗s(β)−2u

|x|β
](un − u)dx.

From Lemma 2.6, we have

(3.3)∫∫
R2N

(F (un(y))f(un(x))− F (u(y))f(u(x)))(un(x)− u(x))

|x− y|λ
dxdy → 0, asn→∞.

Also, in view of (3.1), we get

(3.4)
∫
RN
µV (x)|un(x)− u(x)|2dx→ 0, as n→∞.

By similare method of proof Lemma 3.4. in [37], we have

(3.5)
|un|22∗s(β)

|x|β
→ |u|

22∗s(β)

|x|β
.

12
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Moreover, from (3.5) and Brezis-Lieb Lemma [38], we get

(3.6)∫
RN

|un − u|22∗s(α)

|x|β
dx =

∫
RN

|un|22∗s(α)

|x|β
dx−

∫
RN

|u|22∗s(α)

|x|β
dx+ o(1)→ 0, as n→∞.

So, by (3.6) and the Hölder inequality, we have

(3.7)
∫
RN

[
|un|22∗s(β)−2un

|x|β
− |u|

22∗s(β)−2u

|x|β

]
(un − u)dx→ 0 as n→∞.

Hence, in view of the Hölder inequality, one can get

(3.8) Φun(un − u)− Φu(un − u) ≥ ([un]s,2 − [u]s,2)
2 ≥ 0

From (3.3)− (3.8) and Bun(un − u) ≥ 0, we have ‖un‖ → ‖u‖. Since X uniformly

convex Banach space, then the weak convergence and norm convergence imply

strong convergence. In view of Iµ ∈ C(X,R), Iµ(u) = mµ and I
′
(u) = 0. Hence, we

have the conclusion. �

Proof of Theorem 1.2. Take uµn be a ground state of Iµn as µn → ∞, that

is, Iµn(uµn) = mµn and I
′

µn(uµn) = 0. For notion simplicity, we denote uµn by un.

We may suppose that µn > µ∗ for all n without loss of generality. In view of (2.7),

we get

m0 ≥ mµn ≥ (
1

2
− 1

α
)[u]2s,2 + (

1

2
− 1

α
)

∫
RN
µV (x)|u|2dx.

In view of Lemma 2.2, we can get

(3.9)


un ⇀ u, u2

n ⇀ u2, in Hs(RN),

un → u, u2
n → u2 in Lsloc(RN) (1 ≤ s < 2∗s(β)),

un → u, a.e. in RN ,
|un|
|x|β →

|u|
|x|β in Lr(RN, dx

|x|β ) for 2 ≤ r < 2∗s(β) and 0 ≤ β < 2s.

We divide the proof into the following three steps:

Step 1: u(x) = 0 a.e in RN \ Ω.

By (2.7), we get ∫
RN
V (x)|un|2dx ≤

Cm0

µn
→ 0, as n→∞.

Also, the Fatou’s Lemma implies that∫
RN\Ω

V (x)|u|2dx ≤ lim inf
n→∞

∫
RN
V (x)|un|2dx = 0.

Hence, we have u(x) = 0 a.e in RN \ Ω.

Step 2: u is a critical point of I0. Since I
′

µn(un) = 0, we have
13
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∫∫
R2N

(un(x)− un(y))(ζ(x)− ζ(y))

|x− y|N+2s
dxdy +

∫
RN
µnV (x)unζ(x)dx

+ 2

∫∫
R2N

(u2
n(x)− u2

n(y))(un(x)ζ(x)− un(y)ζ(y))

|x− y|N+2s
dxdy

−
∫∫

R2N

F (un(y))f(un(x))ζ(x)

|x− y|λ
dxdy −

∫
RN

|un|22∗s(β)−2unζ(x)

|x|β
dx = 0,

for all ζ ∈ Hs(RN). Now, in view of (3.9) and V (x) = 0 in Ω,

(3.10)∫∫
R2N

(un(x)− un(y))(ζ(x)− ζ(y))

|x− y|N+2s
dxdy →

∫∫
R2N

(u(x)− u(y))(ζ(x)− ζ(y))

|x− y|N+2s
dxdy,

∫∫
R2N

(u2
n(x)− u2

n(y))(un(x)ζ(x)− un(y)ζ(y))

|x− y|N+2s
dxdy →∫∫

R2N

(u2(x)− u2(y))(u(x)ζ(x)− u(y)ζ(y))

|x− y|N+2s
dxdy,(3.11)

as n→∞, and

(3.12) lim
n→∞

∫
RN
µnV (x)unζ(x)dx = 0,

for all ϕ ∈ Hs(RN). From Lemma 2.6, we have

(3.13)∫∫
R2N

F (un(y))f(un(x))ζ(x)

|x− y|λ
dxdy →

∫∫
R2N

F (u(y))f(u(x))ζ(x)

|x− y|λ
dxdy, ∀ζ ∈ Hs(RN),

similarly to (3.7), we get

(3.14)
∫
RN

|un|22∗s(β)−2unζ(x)

|x|β
dx→

∫
RN

|u|22∗s(β)−2uζ(x)

|x|β
dx, ∀ζ ∈ Hs(RN).

Then, (3.10)− (3.14) and step 1 imply that∫∫
R2N

(u(x)− u(y))(ζ(x)− ζ(y))

|x− y|N+2s
dxdy

+ 2

∫∫
R2N

(u2(x)− u2(y))(u(x)ζ(x)− u(y)ζ(y))

|x− y|N+2s
dxdy

−
∫∫

Ω×Ω

F (u(y))f(u(x))ζ(x)

|x− y|λ
dxdy −

∫
Ω

|u|22∗s(β)−2uζ

|x|β
dx = 0, ∀ζ ∈ Hs(RN),

which implies that u is a critical point of I0.

Step 3: un → u in Ls(RN) for 2 ≤ s < 2∗s(β).

From (3.9), by decay of the lebesgue integral, there exist R > 0, such that

(3.15)
∫
RN\BR(0)

|u(x)|2dx < ε.

Let ω1 :=
{
x ∈ RN : |x| > R

′
and V (x) ≤M

}
,

ω2 :=
{
x ∈ RN : |x| > R

′
and V (x) > M

}
.

14
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From (V2), we have

(3.16) lim
R′→∞

meas(ω1(R
′
)) = 0.

By the Hölder inequality and the Sobolev embedding theoream, we can get∫
ω1(R′ )

|un(x)|2dx ≤
(
meas(ω1(R

′
)
) 2s−β
N−β

(∫
ω1(R′ )

|un(x)|2
∗
s(β)dx

) 2
2∗s (β)

≤ C
(
meas(ω1(R

′
)
) 2s−β
N−β

.(3.17)

On the other hand

(3.18)
∫
ω2(R′ )

|un(x)|2dx ≤ 1

µM

∫
ω2(R′ )

µM |un(x)|2dx ≤ C

µM
.

From (3.15)− (3.18), for any ε > 0, we may choose µ0 > 0 and R
′
> 0 such that

(3.19)
∫
RN\B

R
′ (0)

|un(x)|2dx < ε for µ ≥ µ0.

Take R0 = max{R,R′},∫
RN
|un − u|2dx =

∫
BcR0

(0)

|un − u|2dx+

∫
BR0

(0)

|un − u|2dx

≤ 2

∫
BcR0

(0)

|un|2dx+ 2

∫
BcR0

(0)

|u|2dx+

∫
BR0

(0)

|un − u|2dx

≤ 4ε+

∫
BR0

(0)

|un − u|2dx.

Also, by Lemma 2.2, we get un → u in L2(RN) as n→∞. Since un ⇀ u in E and

un → u in L2(RN), one can get un → u in Ls(RN) for 2 ≤ s < 2∗s(β).

Step 4: m0 is achieved by u. Moreover, un → u in Hs(RN).

By the lower semi-continuity, we have

lim inf
n→∞

[un]2s,2 ≥ [u]2s,2, lim inf
n→∞

[u2
n]2s,2 ≥ [u2]2s,2.(3.20)

In the other hand, by similar method in (2.6), we can obtain

m0 ≥ lim
n→∞

mµn = lim
n→∞

(
Iµn(un)− 1

α
< I

′

µn(un), un >

)
= lim
n→∞

{(
1

2
− 1

α

)
[un]2s,2 +

(
1

2
− 1

α

)∫
RN
µnV (x)|un|2dx

+

(
1

2
− 2

α

)
[u2
n]2s,2 −

1

2

∫∫
R2N

F (un(x))F (un(y))

|x− y|λ
dxdy

+
1

α

∫∫
R2N

F (un(y))f(un(x))un(x)

|x− y|λ
dxdy −

(
1

22∗s(β)
− 1

α

)∫
RN

|un|22∗s(β)

|x|β
dx

}

≥
(

1

2
− 1

α

)
[u]2s,2 +

(
1

2
− 2

α

)
[u2]2s,2 −

1

2

∫∫
R2N

F (u(x))F (u(y))

|x− y|λ
dxdy

15
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+
1

α

∫∫
R2N

F (u(y))f(u(x))u(x)

|x− y|λ
dxdy −

(
1

22∗s(β)
− 1

α

)∫
RN

|u|22∗s(β)

|x|β
dx

=

(
1

2
− 1

α

)
[u]2s,2 +

(
1

2
− 2

α

)
[u2]2s,2 −

1

2

∫∫
Ω×Ω

F (u(x))F (u(y))

|x− y|λ
dxdy

+
1

α

∫∫
Ω×Ω

F (u(y))f(u(x))u(x)

|x− y|λ
dxdy −

(
1

22∗s(β)
− 1

α

)∫
Ω

|u|22∗s(β)

|x|β
dx = I0(u) ≥ m0.

which implies that I0(u) = m0, limn→∞mµn = m0, and

lim inf
n→∞

[un]2s,2 = [u]2s,2, lim inf
n→∞

[u2
n]2s,2 = [u2]2s,2.(3.21)

By step 3 and (3.21), we have ‖un‖Hs(RN ) → ‖u‖Hs(RN ). This together with the

fact that un ⇀ u in Hs(RN ), we get un → u in Hs(RN ). �
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