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Introduction. Let F be a holom function in a neighborhood of the closed
unit disc. We consider the holomorphic function F; defined on the same
neighborhood by

F(z) = F(0) + z F,(2).

Iterating this process, one obtains the Fourier series on the unit circle. We
can consider a more general iterative process where we replace the factor z by a
different Mobius transform of the unit disc Vanishing at point a,,,

Fu(2) = Fy(an) + - Fnt1(2).
Consider a sequence of points (an)n=11ns1de the unit disk such that

Zl—lanl = +oo0,

n=1
The associated Blaschke products and Malmquist — Takenaka (MT) basis
are defined asB, (z) = [Ij- 112 ij , ¢n(z) = B,(2) Vizlansl?

1-an412

Unlike the case of Fourier serles, By, 's are not orthonormal, but ¢,,'s are due
to the normalization (see Lemma 3 in [1]).

It was shown by Coifman and Peyriere [1] that (¢, )n=o is a basis in the
Hardy spaces HP(T), 1 < p < oo, in the following sense. With the inner pro-
duct defined for two functions f, g on the unit circle T as

(f,9)= f f(e?)g(e®)ds,
we have that the MT series converges in H?, i.e.
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N—oo
Zg:o(f: (pn>(pn —)f (1)

The non-linear phase unwinding. There is a natural connection between
the MT series and the non-linear phase unwinding decomposition introduced in
the dissertation of Nahon [2]. For a function F in HP(T) one can consider the
Blaschke factorization

F(z) — F(0) = B(2)Fy(2),
where B is a Blaschke product and F; is in HP (T) and does not have zeros in
the unit disc. Iterating the procedure, one obtains the formal unwinding series
F = F(0)B + F,(0)BB; + -+ E,(0)BB; ... B, + ---.

Numerical simulations from [2] suggest that the right-hand side of the
above equation converges back to the function and generally this happens at
exponential rate. The result of Coifman and Peyri\'ere implies convergence in
HP(T). The case p =2 was previously obtained by Qian [3], who had
developed a similar theory to phase unwinding independently of Nahon in [4].
Coifman and Steinerberger [5] proved convergence in several different contexts

including convergence in fractional Sobolev spaces H®, s > —%, if the initial

1
function F is in H**2.

If at each step of the unwinding decomposition the Blaschke product B,
has finitely many zeros, for example if F is holomorphic in an e-neighborhood
of the unit disk, we can consider the sequence of all zeros oB, By, .... The asso-
ciated MT series will then reproduce the unwinding decomposition. Intuitively,
making the zeros adapted to the function should accelerate the convergence. For
this reason, the MT series is also called the Adaptive Fourier Transform.

For an overview of these constructions, we refer to the recent paper [6]. For
some further results and intuition on the unwinding decomposition we refer to
[7, 8].

Results.We are interested in almost everywhere convergence of the MT
series (1). By standard techniques, almost everywhere convergence can be
deduced from estimates of the maximal partial sum operator. Denote

N
TF(e™) = T@ f(ei) = supyl ) {F.0npn(e™) |
n=0

In fact, we show that up to a Hilbert transform and a maximal function, the
operator T is equal to

T@n () = supy| [* f(e?)Bn (™) =25 |. )

sin

Question: Is the maximal operator (8) bounded on LP?

If a,, = 0, then the MT series reduces to the classical Fourier series and the
operator (2) reduces to the Carleson operator. In this case the positive answer to
the above question is given by the Carleson — Hunt theorem [9, 10].

We give two partial answers to this question in this paper. First, if the
points are in a compact disc inside the open unit disc, the problem becomes a
more benign perturbation of the Carleson — Hunt theorem. In this case, we
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quantify the LP norm of the maximal partial sum operator depending on the
distance of the compact disc from the unit circle.

Theorem 1. Let 0 < r < 1 and let (ay)p=q1 be an arbitrary sequence such
that |a,| < r foralln. Then, for1 <p < 2,

1
||T(an>||Lp(T)ﬁLp . C(p)log—. 3)
For 2 < p < o, we have the better estimate
1
||T(“”)||Lp(r)%p(r) < C(p) log—. 4)

Furthermore, for 1 < p < 2, we have a lower bound in the sense, that for
every 0 < r < 1 there exists a sequence (ay)n=1 With |a,| < r such that

||T(an)||Lp(T)—>Lp(T) > C(p) logﬁ. (5)

In particular, the bounds (4) and (5) are sharp for p = 2.
There is a conformally invariant version of Theorem 1 for p = 2 and ar-
bitrary compact sets inside the disc. In that case, the quantity logﬁ is replaced

by the hyperbolic diameter of the compact set. Let us denote by m;,(z) = 1Z__Ebz
the Mobius transform taking b to 0.
Proposition. Let (a,,);=; and b be points in the unit disk, then
||T(an)|| = ||T(m—b(an))|| ]
L*(T)—~L?(T) L*(T)—~L?(T)
Furthermore, if 1 < g < p < oo, then
(7@ vy < S@DINT oy pacry (6)

where 6(q, p) > 0 are some constants that blow up as g and p get closer.

For the inequality (6), sparse domination bounds for Carleson-like
operators from [11] are used. They allow to pass from the boundedness of T (@)
for one p, to the boundedness for all p = py. Thus, (6) implies a symmetric
qualitative statement: T(@n) is bounded on LP for all p >r if and only if
T(Mm-b(an)) js bounded on LP for all p > r . Ideally, one might expect also the

symmetric quantitative result

”T(m_b(an)) ||LP(T)—>Lp(T)~||T(an) ||Lq(T)—>Lq(T).

however, we do not know how to prove or disprove it.

In Theorem 1, we first obtain the logarithmic dependence (3) for all expo-
nents. We prove a bound independent of r for small scales by the techniques of
the polynomial Carleson theorem, discussed in the next subsection, and we
apply a triangle inequality for the large scales. Then, for p = 2 we are able to
improve the estimate for the large scales by using a TT*argument and the
analyticity of Blaschke products. The bound (4) for p > 2 follows by black-
boxing sparse domination results for Carleson-type opeators such as Theorems
9.1 and 9.2 in [11]. Whether (3) and (4) are sharp we do not know.

We turn to the second partial answer, the case when the points are in a non-
tangential approach region to the boundary.
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Theorem 2. Let a,, be inside the triangle with vertices (1,0), (%,%) and
(%, — %) for alln, then

”T ||L2(T)—>L2(T) =C

Theorem 2 is true for similar non-tangential approach regions to other
points on the circle. Furthermore, if one takes the union of k approach regions
for k distinct points at once, then it is possible to prove along the lines of
Theorem 2 that the L2(T) norm of the operator (2) is bounded by k. If the
boundary points for the approach regions are chosen to be equidistant, then the
construction giving (5) also provides the lower bound /log k. The sharp bound
for this configuration is again unknown to us. It could also be interesting to
consider approach regions to countably many points for various configurations.

Connection to polynomial Carleson theorem. Theorem 1 and Theorem 2
turn out to be closely related to the polynomial Carleson theorem. Let us recall a
special case of the polynomial Carleson operator [12,13,14]

Caf (x) = supgSupo<e<n f f(y)eie®
e<|x-y|<N

where the first supremum is taken over polynomials of degree at most d. The
case d = 1 is the classical Carleson operator. Its weak L? bounds were implicit
in Carleson's paper [8] on almost everywhere convergence of the Fourier series,
Hunt improved this to L? bounds, 1 < p < oo. Alternative approaches appeared
in Fefferman [15], Lacey and Thiele [16]. On the other hand, Stein and Wainger
[17] proved the case d = 2 but restricted to polynomials without the linear term.
Lie combined the two techniques in [12,13] to prove the general LP bounds for
C,4. Finally, Zorin — Kranich generalized the argument to higher dimensions and
non-convolution Calderon — Zygmund kernels in [14]. For a gentle introduction
to Carleson's theorem and a discussion of the different approaches we refer to
Demeter's paper [18].

We reformulate the polynomial Carleson theorem as Theorem 3 describing
the general necessary conditions on the set of the phase functions. Then, Theo-
rem 1 and Theorem 2 are proved by showing that the Blaschke phases satisfy
these conditions and applying Theorem 3.

Let K be a translation-invariant Calderon—Zygmund kernel on R with the
associated operator bounded on L?(R). We assume that there exists an & > 0

such that supp K lies in [—%,%] Let Q be a countable subset of C?(R). For

each interval I and P,Q € Q we define
di(P,Q) = supyye/|(P— Q)(x) — (P — Q) ()l
and assume that d; is a metric on Q.
We impose the following conditions on Q. Assume that there exists a
constant C > 0 such that
A. (the analog of Lemma 2.6 in [14]) for any intervals J, I with J lying in [
and |I| < ¢, and for P,Q € Q we have
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B. (John-Ellipsoid Property) for any y > 1 and interval I with |I| < &, any
(v, d;)-ball can be covered by Cy number of (1, d;)--balls;

C. (the analog of Lemma A.1 in [14], oscillatory integral estimate) for any
measurable function g: R — C, interval | with supp (g) lying in J and
|/| < e,and any P,Q € Q we have

|| e-0tg@ax
J

< CSuply|<+a;p.0) 1l f lg(x) — g(x — y)ldx.
R

Theorem 3. Assume conditions A,B and C hold for the set Q. We define the
operator T: L},.(R) = L°(R) as

Tf(x) = supgeqSuPo<s<n f F(3e YK (x — y)dy|
e<|x-y|<N
Further, let 0 < a < % and 0 < u < p <oo. Let F,G be measurable sub-
sets of R and F .= (M1 > p}, G .= {M1; > p}. Then the following inequa-
lities hold(with the implicit constants depend on C and a, but are independent
of )
||T”L2(T)—>L2(T) <1
||1GT1R\G~||L2(T)—>L2(T) S ua’
||1R\F~T1F||L2(T)—>L2(T) S p‘x_
Theorem 3 is a version on Zorin — Kranich's Theorem 1.5 in [14]. Lemma

B.1 in the latter establishes LP boundedness of T, for 1 < p < oo, from the last
two inequalities.
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We prove LP bounds for the maximal partial sum operator of the Malmquist-
Takenaka series under additional assumptions on the zeros of the Mobius transforms.
We locate the problem in the time-frequency setting and, in particular, we connect it to
the polynomial Carleson theorem.
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Q. S. Uugujuiyui

Uwjdpnthuwn — Smjkiiuljuyh swpph hudwpjuw wdkimipkp
qniquuihumipjui duuhi

Uwpdpnthunn — Swijttwluyh hwdwlwpgh dwutwyh gmdwpubph dwpuhduyg
oy kpwwinnph hwdwp wywugnigqus L L7 guwhwinwljuttp Unpnuuh dbwthnuntpyut
qpnutiph Ypw jpugnighs wuydwitbph phiypnud: Mughpp mbnujuuws t nwwpusw-
hwdwpiuyght gipnisdwt hwdwnbpunmd b dwubwynpuybu juydnud E Qupjkunth
puqUutnuuuyht pinptdh htan:

I'. T. Muanaxkansia

O nourn B€3/1¢ CXOAUMOCTH psaaa ManmkBucta — TakeHaku

Jlokazanpl LP OLEHKU IS MaKCHMAJIbHOTO OIEpaTopa YacTUYHBIX CYMM psiia
Manmkeucta — TakeHaKd TpU JOMOJTHUTENBHBIX MPEAMOIIOKEHUIX O HYJIAX Mpeodpa-
3oBaHuii Mébuyca. [Ipobiiema paccMOTpeHa B 4aCTOTHO-BPEMEHHOHN MOCTAHOBKE M, B
YaCTHOCTH, CBsI3aHa C MOJIMHOMHUANBHON TeopeMoit Kapiecona.
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