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Introduction. Let ܨ be a holom function in a neighborhood of the closed 

unit disc. We consider the holomorphic function ܨଵ defined on the same 
neighborhood by 

(ݖ)ܨ = (0)ܨ	 +  .(ݖ)ଵܨ	ݖ	
Iterating this process, one obtains the Fourier series on the unit circle. We 

can consider a more general iterative process where we replace the factor ݖ by a 
different Mobius transform of the unit disc vanishing at point ܽ௡, 

(ݖ)௡ܨ = ௡(ܽ௡)ܨ +
௭ି௔೙
ଵି௔೙തതതത௭

 .(ݖ)௡ାଵܨ
Consider a sequence of points (ܽ௡)௡ୀଵஶ inside the unit disk such that 

෍1− |ܽ௡| = +∞
ஶ

௡ୀଵ

. 

The associated Blaschke products and Malmquist – Takenaka (MT) basis 

are defined asܤ௡(ݖ) = ∏ ௭ି௔ೕ
ଵି௔ണതതത௭

௡
௝ୀଵ , ߮௡(ݖ) = (ݖ)௡ܤ

ඥଵି|௔೙శభ|మ

ଵି௔೙శభതതതതതതത௭
. 

Unlike the case of Fourier series, ܤ௡ 's are not orthonormal, but ߮௡ 's are due 
to the normalization (see Lemma 3 in  [1]). 

It was shown by Coifman and Peyriere [1] that (߮௡)௡ୀ଴ஶ  is a basis in the 
Hardy spaces ܪ௣(ࢀ), 1 < ݌ < ∞, in the following sense. With the inner pro-
duct defined for two functions ݂, ݃ on the unit circle ࢀ as 

〈݂, ݃〉 =
1
ߨ2

න ݂൫݁௜ఏ൯݃(݁పఏ)തതതതതതതതത݀ߠ,
గ

ିగ
 

we have that the MT series converges in ܪ௣, i.e. 
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∑ 〈݂, ߮௡〉߮௡
ே→ஶ
ሱ⎯⎯ሮே

௡ୀ଴ ݂.                                               (1) 
The non-linear phase unwinding. There is a natural connection between 

the MT series and the non-linear phase unwinding decomposition introduced in 
the dissertation of Nahon  [2]. For a function ܨ in ܪ௣(ࢀ) one can consider the 
Blaschke factorization 

(ݖ)ܨ − (0)ܨ =  ,(ݖ)ଵܨ(ݖ)ܤ
where ܤ is a Blaschke product and ܨଵ is in ܪ௣(ࢀ) and does not have zeros in 
the unit disc. Iterating the procedure, one obtains the formal unwinding series 

ܨ = ܤ(0)ܨ + ଵܤܤଵ(0)ܨ +⋯+ ௡ܤ…ଵܤܤ௡(0)ܨ +⋯. 
Numerical simulations  from [2] suggest that the right-hand side of the 

above equation converges back to the function and generally this happens at 
exponential rate. The result of Coifman and Peyri\'ere implies convergence in 
݌ The case .(ࢀ)௣ܪ = 2 was previously obtained by Qian [3], who had 
developed a similar theory to phase unwinding independently of Nahon in [4]. 
Coifman and Steinerberger [5] proved convergence in several different contexts 
including convergence in fractional Sobolev spaces ܪ௦, ݏ > − ଵ

ଶ
, if the initial 

function ܨ is in ܪ௦ାభమ. 
If at each step of the unwinding decomposition the Blaschke product ܤ௡ 

has finitely many zeros, for example if ܨ is holomorphic in an ߝ-neighborhood 
of the unit disk, we can consider the sequence of all zeros oܤ, ,ଵܤ …. The asso-
ciated MT series will then reproduce the unwinding decomposition. Intuitively, 
making the zeros adapted to the function should accelerate the convergence. For 
this reason, the MT series is also called the Adaptive Fourier Transform. 

For an overview of these constructions, we refer to the recent paper [6]. For 
some further results and intuition on the unwinding decomposition we refer to 
[7, 8]. 

Results.We are interested in almost everywhere convergence of the MT 
series (1). By standard techniques, almost everywhere convergence can be 
deduced from estimates of the maximal partial sum operator. Denote 

݂ܶ൫݁௜௫൯ ≔ ܶ(௔೙)݂൫݁௜௫൯ ≔ ,݂〉ே|෍݌ݑݏ ߮௡〉߮௡൫݁௜௫൯
ே

௡ୀ଴

|. 

In fact, we show that up to a Hilbert transform and a maximal function, the 
operator ܶ is equal to 

ܶ(௔೙)݂൫݁௜௫൯ ≔ |ே݌ݑݏ ∫ ݂൫݁௜௬൯ܤ௡(݁௜௬)ିଵ
ௗ௬

ୱ୧୬ೣష೤మ

గ
ିగ |.                    (2) 

Question: Is the maximal operator (8) bounded on ܮ௣? 
If ܽ௡ ≡ 0, then the MT series reduces to the classical Fourier series and the 

operator (2) reduces to the Carleson operator. In this case the positive answer to 
the above question is given by the Carleson – Hunt theorem [9, 10]. 

We give two partial answers to this question in this paper. First, if the 
points are in a compact disc inside the open unit disc, the problem becomes a 
more benign perturbation of the Carleson – Hunt theorem. In this case, we 



105 

quantify the ܮ௣ norm of the maximal partial sum operator depending on the 
distance of the compact disc from the unit circle. 

Theorem 1. Let 0 < ݎ < 1 and let (ܽ௡)௡ୀଵஶ  be an arbitrary sequence such 
that |ܽ௡| ≤ for all ݊. Then, for 1 ݎ < ݌ ≤ 2, 

ฮܶ(௔೙)ฮ௅೛(ࢀ)→௅೛(ࢀ) ≤ (݌)ܥ log ଵ
ଵି௥

.                                         (3) 
For 2 ≤ ݌ < ∞, we have the better estimate 

ฮܶ(௔೙)ฮ௅೛(ࢀ)→௅೛(ࢀ) ≤ ටlog(݌)ܥ ଵ
ଵି௥

.                                          (4) 

Furthermore, for 1 < ݌ ≤ 2, we have a lower bound in the sense, that for 
every 0 < ݎ < 1 there exists a sequence (ܽ௡)௡ୀଵஶ  with |ܽ௡| ≤  such that ݎ

ฮܶ(௔೙)ฮ௅೛(ࢀ)→௅೛(ࢀ) > ටlog(݌)ܥ ଵ
ଵି௥

.                                        (5) 

In particular, the bounds (4) and (5) are sharp for ݌ = 2. 
There is a conformally invariant version of Theorem 1 for ݌ = 2 and ar-

bitrary compact sets inside the disc. In that case, the quantity log ଵ
ଵି௥

 is replaced 

by the hyperbolic diameter of the compact set. Let us denote by ݉௕(ݖ) ≔
௭ି௕
ଵି௕ത௭

 
the Mobius transform taking ܾ to 0. 

Proposition. Let (ܽ௡)௡ୀଵஶ  and ܾ be points in the unit disk, then 
ฮܶ(௔೙)ฮ௅మ(ࢀ)→௅మ(ࢀ) = ฮܶ(௠ష್(௔೙))ฮ௅మ(ࢀ)→௅మ(ࢀ). 

Furthermore, if 1 < ݍ < ݌ < ∞, then 
ฮܶ(௠ష್(௔೙))ฮ௅೛(ࢀ)→௅೛(ࢀ) ≤ ,ݍ)ߜ  (6)                    	,(ࢀ)௅೜→(ࢀ)ฮܶ(௔೙)ฮ௅೜(݌

where ݍ)ߜ, (݌ > 0 are some constants that blow up as ݍ and ݌ get closer. 
For the inequality (6), sparse domination bounds for Carleson-like 

operators from [11] are used. They allow to pass from the boundedness of ܶ(௔೙) 
for one ݌଴ to the boundedness for all ݌ ≥  ଴. Thus, (6) implies a symmetric݌
qualitative statement: ܶ(௔೙) is bounded on ܮ௣ for all ݌ > ݎ  if and only if 
ܶ(௠ష್(௔೙)) is bounded on ܮ௣ for all ݌ > ݎ . Ideally, one might expect also the 
symmetric quantitative result 

ฮܶ(௠ష್(௔೙))ฮ௅೛(ࢀ)→௅೛(ࢀ)~ฮܶ
(௔೙)ฮ௅೜(ࢀ)→௅೜(ࢀ), 

however, we do not know how to prove or disprove it. 
In Theorem 1, we first obtain the logarithmic dependence (3) for all expo-

nents. We prove a bound independent of ݎ for small scales by the techniques of 
the polynomial Carleson theorem, discussed in the next subsection, and we 
apply a triangle inequality for the large scales. Then, for ݌ = 2 we are able to 
improve the estimate for the large scales by using a ܶܶ∗argument and the 
analyticity of Blaschke products. The bound (4) for ݌ > 2 follows by black-
boxing sparse domination results for Carleson-type opeators such as Theorems 
9.1 and 9.2 in [11]. Whether (3) and (4) are sharp we do not know. 

We turn to the second partial answer, the case when the points are in a non-
tangential approach region to the boundary. 
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Theorem 2.  Let ܽ௡ be inside the triangle with vertices (1,0), (ଵ
ଶ
, ଵ
ଶ
) and 

(ଵ
ଶ
, − ଵ

ଶ
) for all ݊, then 

ฮܶ ฮ௅మ(ࢀ)→௅మ(ࢀ) ≤  .ܥ
Theorem 2 is true for similar non-tangential approach regions to other 

points on the circle. Furthermore, if one takes the union of ݇ approach regions 
for ݇ distinct points at once, then it is possible to prove along the lines of 
Theorem 2 that the ܮଶ(ࢀ) norm of the operator (2) is bounded by ݇. If the 
boundary points for the approach regions are chosen to be equidistant, then the 
construction giving (5) also provides the lower bound ඥlog ݇. The sharp bound 
for this configuration is again unknown to us. It could also be interesting to 
consider approach regions to countably many points for various configurations. 

Connection to polynomial Carleson theorem. Theorem 1 and Theorem 2 
turn out to be closely related to the polynomial Carleson theorem. Let us recall a 
special case of the polynomial Carleson operator [12,13,14] 

(ݔ)ௗ݂ܥ ≔ ଴ழఌழே݌ݑݏொ݌ݑݏ ቮ න ௜ொ(௬)݁(ݕ)݂
ݕ݀
ݔ − ݕ

ఌழ|௫ି௬|ழே

ቮ, 

where the first supremum is taken over polynomials of degree at most ݀. The 
case ݀ = 1 is the classical Carleson operator. Its weak ܮଶ bounds were implicit 
in Carleson's paper [8] on almost everywhere convergence of the Fourier series, 
Hunt improved this to ܮ௣ bounds, 1 < ݌ < ∞. Alternative approaches appeared 
in Fefferman [15], Lacey and Thiele [16]. On the other hand, Stein and Wainger 
[17] proved the case ݀ ≥ 2 but restricted to polynomials without the linear term. 
Lie combined the two techniques in [12,13] to prove the general ܮ௣ bounds for 
ௗܥ . Finally, Zorin – Kranich generalized the argument to higher dimensions and 
non-convolution Calderon – Zygmund kernels in [14]. For a gentle introduction 
to Carleson's theorem and a discussion of the different approaches we refer to 
Demeter's paper [18]. 

We reformulate the polynomial Carleson theorem as Theorem 3 describing 
the general necessary conditions on the set of the phase functions. Then, Theo-
rem 1 and Theorem 2 are proved by showing that the Blaschke phases satisfy 
these conditions and applying Theorem 3. 

Let ܭ be a translation-invariant Calderon–Zygmund kernel on ࡾ with the 
associated operator bounded on ܮଶ(ࡾ). We assume that there exists an ߝ > 0 
such that ݌݌ݑݏ	ܭ	lies in ቂ− ఌ

ଶ
, ఌ
ଶ
ቃ. Let ۿ be a countable subset of ܥଶ(ࡾ). For 

each interval ܫ and ܲ, ܳ	 ∈  we define ۿ
݀ூ(ܲ, ܳ) ≔ ܲ)|௫,௬∈ூ݌ݑݏ − (ݔ)(ܳ − (ܲ −  ,|(ݕ)(ܳ

and assume that ݀ூ is a metric on ۿ. 
We impose the following conditions on ۿ. Assume that there exists a 

constant ܥ > 0 such that 
A. (the analog of Lemma 2.6 in [14]) for any intervals ܬ,  ܫ lying in ܬ with ܫ

and |ܫ| ≤ ,ܲ and for ,ߝ ܳ	 ∈  we have ۿ
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݀ூ(ܲ, ܳ) ≤ ܥ
|ܫ|
|ܬ|
݀௃(ܲ, ܳ), ݀௃(ܲ, ܳ) ≤ ܥ

|ܬ|
|ܫ|
݀ூ(ܲ, ܳ); 

B. (John-Ellipsoid Property) for any ߛ > 1 and interval ܫ with |ܫ| ≤  any ,ߝ
,ߛ) ݀ூ)-ball can be covered by ߛܥ number of (1, ݀ூ)--balls; 

C. (the analog of Lemma A.1 in [14], oscillatory integral estimate) for any 
measurable function ݃: ࡾ →  and ܬ lying in (݃)	݌݌ݑݏ with ܬ interval ,࡯
|ܬ| ≤ ,ܲ and any ,ߝ ܳ	 ∈  we have ۿ

| න ݁௜(௉ିொ)(௫)݃(ݔ)݀ݔ|
௃

≤ (ݔ)݃|௬|ழ(ଵାௗ಻(௉,ொ))షభ|௃|න|݌ݑݏܥ − ݔ)݃ − .ݔ݀|(ݕ
ࡾ

 

Theorem 3. Assume conditions A,B and C hold for the set ۿ. We define the 
operator ܶ: ௟௢௖ଵܮ (ࡾ) →  as (ࡾ)଴ܮ

(ݔ)݂ܶ ≔ ଴ழఌழே݌ݑݏۿ∋ொ݌ݑݏ ቮ න ݔ)ܭ௜ொ(௬)݁(ݕ)݂ − ݕ݀(ݕ
ఌழ|௫ି௬|ழே

ቮ. 

Further, let 0 < ߙ < ଵ
ଶ
 and 0 < ߤ < ߩ < ∞. Let ܨ, -be measurable sub ܩ

sets of ࡾ and ܨ෨ ≔ ૚ிܯ} > ෨ܩ ,{ߤ ≔ ૚ீܯ} > -Then the following inequa .{ߩ
lities hold(with the implicit constants depend on ܥ and ߙ, but are independent 
of ߝ) 

‖ܶ‖௅మ(ࢀ)→௅మ(ࢀ) ≤ 1, 
ฮ૚ீܶ૚ࡾ\ ෨ீฮ௅మ(ࢀ)→௅మ(ࢀ) ≤ ఈߤ , 

ฮ૚ࡾ\ி෨ܶ૚ࡲฮ௅మ(ࢀ)→௅మ(ࢀ) ≤ ఈߩ . 
Theorem 3 is a version on Zorin – Kranich's Theorem 1.5 in [14]. Lemma 

B.1 in the latter establishes ܮ௣ boundedness of ܶ, for 1 < ݌ < ∞, from the last 
two inequalities. 
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We prove ܮ௣ bounds for the maximal partial sum operator of the Malmquist-

Takenaka series under additional assumptions on the zeros of the Mobius transforms. 
We locate the problem in the time-frequency setting and, in particular, we connect it to 
the polynomial Carleson theorem. 
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Գ. Տ. Մնացականյան 
 

Մալմքուիստ – Տակենակայի շարքի համարյա ամենուրեք  
զուգամիտության մասին 

 
Մալմքուիստ – Տակենակայի համակարգի մասնակի գումարների մաքսիմալ  

օպերատորի համար ապացուցված են ܮ௣  գնահատականներ Մոբյուսի ձևափոխության 
զրոների վրա լրացուցիչ պայմանների դեպքում: Խնդիրը տեղակալված է տարածա-
հաճախային վերլուծման համատեքստում և մասնավորապես կապվում է Կարլեսոնի 
բազմանդամային թեորեմի հետ: 

   
Г. Т. Мнацаканян 

 
О почти везде сходимости ряда Малмквиста – Такенаки 

 
Доказаны ܮ௣ оценки для максимального оператора частичных сумм ряда 

Малмквиста – Такенаки при дополнительных предположениях о нулях преобра-
зований Мёбиуса. Проблема рассмотрена в частотно-временной постановке и, в 
частности, связана с полиномиальной теоремой Карлесона. 
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