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U.U. Ugbwnhuyub

Puquupununphs Ejunpuwlniunhl wipputpp (MCEAW) yhtqonpmipbnughtt unnigduspnud.
Yhpworwlwh hiwpunpmpnibibp

ledhulpumhp‘ hEjnpuwrwdquljutnipnil, puqUuwpununphs wjhp, punhwbpugyws nkugnp,

EEjunpuwlnh]  Jhdwl, whhqniphunwyughtt  hnuqusp, ny winiunhly  Yntnwln, hwpp
nhdnpuwghw, pyuqhuinunhl] hwjuwuwpnidubp:

Uohmutnwipnd gnyg b wpynud, np whbqnijkljnpuljut jupnigusph mipwpwbgmnip phnpdus
hwppnipniinud b Ukl punqugphsng wpwdquljut uuthph whpp, 1 kpym pununphsny wrwdquiljub
hupp phnplwghugh wihpp Jupnn & nigblgdly jud plnpiwé hwppnipjubp nigquihugwug
EEjunpuljut nugwnh pununphsh mwnwinidubpn] jud punpdus hwppnipjuip qniqubtn, hupp
EEyunpuljut npupnh nunwinudutpnyg: Quuynpynud Eu puquupununphy  EiEjunpuunwdqujui
whpubkph snpu whwh thupkpibp: Unwgjws btlh, uyhbgqnpmoiptnh ptnpjws hwppnipmniinud,
EEjunpuwnwdquijuimpiub iplsut pugph dbwlipydwt wihpudbon b pudupup wuydwiubpp,
npnlp pny| o wwhu dbwynpl] puquupwnunphs pughunwnhl LEjupuwnwdquijut wihph
wpwdhtt gpgenud b mwpusnid:

Apa C. ApeTucsin
MHOroKoMnoHeHTHbIE 31eKTPOaAKycTHYecKHe BOJHBI (MDAB) B nbe30KpHCTANINYECKMX TEKCTypax:
NPHKJIIHbIE BO3MOKHOCTH

KiioueBble €J10Ba: 3JEKTPOYNPYrOCTb, MHOTOKOMIIOHCHTHAsI BOJIHA, OOOOIIEHHBI TEH30p, JIEKTPOAKTHBHOE
COCTOSIHUE, TbE30KPUCTAIUIMYECKAsT TEKCTYpPa, HEAKYCTHUECKUH KOHTAKT, IIocKas nedopmanus, KBasuCTaTHye-
CKHE ypaBHEHUSL.

B nanHoit paboTe mOKa3bIBAaeTCS, YTO B KAXKHOW CArUTTAIBHON IUIOCKOCTH IbE30TEKCTYPhl KaK OJXHOKOM-
MOHEHTHAsl yIpyrasi CABUrOBasi BOJIHA, TaK M ABYXKOMIIOHEHTHAs yIpyras IUIockas AehopManioHHAs BOJIHA
MOTYT COHPOBOXJAThCS JHMOO KOJNCOAHUAMH MONEPEYHON COCTABIISIOMICH AJIEKTPUYECKOro Mo, JIbo
KOJICOAHUSIMH TUIOCKOTO DJIEKTpHYecKoro mousi. PopMHUPYIOTCS 4eThIpe TaKMX IaKeTa MHOTOKOMIIOHEHTHBIX
EKTPOYNpyrux BouH. [TomydeHsl HEOOXOANMBIE U JIOCTATOUHbIE YCIIOBHS, MO3BOJISIONINE OCTABUTH JIBYMEPHYIO
3ajady OJIEKTPOYHNPYrOCTH B BHOPHPYEMOH CarMTTajJbHOH IUIOCKOCTH IbE30KPHUCTAIa, TA€ BO3MOXHO
paszenbHOe BO30YKIACHNE M PaCIPOCTPAHEHHE MHOTOKOMIIOHEHTHOH KBa3UCTATHYECKON IEKTPOYIPYTOil BOJIHBI.

In this paper is shown, that in each sagittal plane of the piezoelectric texture, both the one-component elastic shear
wave and the two-component elastic plane deformation wave can be accompanied by either oscillations of the
transverse component of the electric field or oscillations of the plane electric field. Four such packets of
multicomponent electroelastic waves are formed.Necessary and sufficient conditions are obtained that allow the
formulation of a two-dimensional problem of electroelasticity in a vibrated sagittal plane of a piezocrystal, where
separate excitation and propagation of a multicomponent quasistatic electroelastic wave is possible.
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Introduction

In many structural diagrams of modern electronic technology, various new crystalline
elements, layered composite waveguides, formed from various natural or artificially grown
piezoelectric materials with different physical and mechanical properties, are widely used.
The piezoelectric or ferroelectric materials have many distinct properties, negative
piezoelectric constants and high mechanical flexibility. Piezoelectric or ferroelectric
materials are widely used in 2D layered functional heterostructures. These new materials
and heterostructures have broad applications in memory, logic, sensing, optical and energy
harvesting devices. Piezoelectric crystals are inherently anisotropic structures and the
operation of such elements is often based on the emission (or delay) of electroacoustic
waves of incomplete component packages.

Separate excitation and propagation of a purely transverse elastic wave (SH type waves)
from a plane deformation wave (P&SV type waves) is possible both in an isotropic medium
and in all crystal textures of cubic, hexagonal, trigonal, tetragonal and rhombic symmetry
[1]. A higher anisotropy of the crystal texture leads to the convolution of the components of
purely elastic waves and, in fact, the separation of components in elastic bodies is uniquely
determined by the structure of the elastic constant tensor.

In contrast to a purely elastic medium, where two types of waves can propagate
separately: a two-component wave of the plane stress-strain state (P&SV type wave) and a
single-component anti-plane deformation wave (SH type wave), in a piezoelectric medium,
four different incomplete sets of multicomponent electroelastic waves can propagate
separately. The properties of piezoelectric media are given by the structure of the
generalized tensor of electromechanical constants. Therefore, in the case of piezoelectric
media, the group of those symmetries and classes of crystals is significantly narrowed, in
the sagittal planes of which separate excitation and propagation of the indicated types of
electroelastic waves are possible.

The possibility of the separate excitation and propagation of an electroactive elastic
plane deformation wave from thenon-electroactive shear elastic wave or separate excitation
and propagation of an electroactive shear elastic wave from a non electroactive elastic plane
deformation wave, depending on the physical properties of the piezoelectric medium, was
studied in the articles [2, 3]. However, the other new cases when separate excitation and
propagation of two electroactive wave packets are possiblehave not been considered yet.

The ability to formulate the problem of excitation and propagation of incomplete
multicomponent electroelastic waves is due to both the anisotropy of the medium and the
admissibility of setting a two-dimensional problem in one of the sagittal planes of an
anisotropic medium.

As a rule, structural elements used in modern technology are thin-walled and in the
formulation of two-dimensional problems, we must take into account possible approaches
that allow separate formulations of the problems of electroactive plane deformation and
electroactive anti-plane deformation.

The mathematical formulation of the two-dimensional problem of electroelasticity in

any of the sagittal planes O)COL)CI3 of the piezoelectric texture requires the observance of

several well-known hypotheses:
i)  The hypothesis of straight normal.
ii)  The hypothesis of the inextensibility of the middle surface of the plate.
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iii) The hypothesis about the absence of pressure of the material layers on
each other.

Adhering to the physical essence of these hypotheses, in applied problems of thin-
walled elastic elements of structures, the two-dimensional problem of the theory of
elasticity was mathematically modeled in different ways by many researchers Kirchhoff G.
[4], Timoshenko S., Woinowsky-Krieger S. [5], Reissner E. [6], Ambartsumian S.A. [7].In
each of these cases, the hypotheses were accepted as additional restrictions based on the
nature of the distribution of the mechanical load on the element and the conditions for
fixing the end of the elastic element.

The hypothetical approach has also been successfully implemented in the problems of
electro-magneto-elasticity of thin plates and shells [8], where, along with hypothetical
distributions of mechanical characteristics over the thickness of a thin-walled element,
characteristic distributions of the electromagnetic field are also accepted.

Naturally, the need to introduce additional restrictions (hypotheses) also arises when
modeling two-dimensional problems on the propagation of electroelastic waves of plane or
antiplane deformations in semi-infinite waveguides. In general, in order to fulfill these
hypotheses, additional conditions are imposed on the electromechanical characteristics:

a. In the process of deformation, the segment of the straight line normal to
the sagittal plane does not change.

b.  The characterizing values of the wave-driven process outside the sagittal
plane do not change.

c. In the sagittal plane of the piezocrystal, the axial stressandtheaxial
polarization (electrical displacement)are absent.

These conditions make it possible to formulate a generalized plane stress-strain state
also in a cut perpendicular to the selected axis (material plane of zero thickness) of an
infinite waveguide layer. With loosely supported detached ends of the layer, the principles
of Saint-Venant [10] and flat sections [9] also work.According to hypotheses, in the case
when there are no acting axial stress and axial polarization in the selected planes, the elastic
surface is inextensible, and it cannot be transversely polarized. Such modeling also allows
formulating an equivalent generalized antiplane stress-strain state.

In this paper, definitions of possible multicomponent waves (package of wave
components) are given. The possibility of the separated formulation of two-dimensional
problems of electroelasticity in piezoelectric textures is investigated.

As an applied example, it will be shown that non-acoustic contact between the layers of
an inhomogeneous waveguide makes it possible to create a wave hybrid in it, when
dissimilar electroacoustic fields are created in its layers.

1. Some definitions and basic relations of the electroelastic stress-strain state in
homogeneous piezoelectric media
Physicomechanical constants of the homogeneous piezoelectric medium: the elastic

stiffness ¢, . , piezoelectric coefficients e. and dielectric constant €., , form a
(#7)(nm) J(mn) ik

generalized electroelastic  tensor of  piezoelectric  materials of the type

(?/'n )9x9 = (64'/' )6)(6 v (émn )3><6 “ (ét’k )3><3 [11,12]
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(G ) (e ),
(ém(ij) )3x6 (éik )3><3

In generalized electroelastic tensor of linear electroelasticity of piezoelectric materials
(1.1) the notations and known transitions from four-digit indices to two-digit indices
(ay)2a if a=vyand (ay) 29—a—7v if o #7yare used. It is also assumed

(1.1)

that the indices {a;B;y} €{1;2;3}, o # B, p#y and y # o indicated by the Greek
letters, are dumb, and summation over them is not carried out.

The conditions permitting separate excitation and propagation of the plane or anti flat
stress strain states in the uniform piezoelectric medium of this anisotropy, are imposed on

the structure tensor of elastic material stiffness (éij )6 038 well as on the corresponding
X

structures of tensors of piezoelectric coefficients (é”/.) and dielectric constant of the
material (Sl.k )3X3 .

The generalized linear tensor of electroelasticity (1.1) for each piezoelectric texture, the
material relations of the medium and the basic equations are determined in accordance with
the geometric diagram of piezoelectric textures (Fig. 1),according to the rules for installing
crystals by to crystal syngonies (table 1) and the rules for choosing crystallographic axes in
them (table 2) [11, 12].

X X, X Y—crystallographic —axis of the
arApsy f—C1Y, grap
texture,
{OLO , Bo , YO} - angles in the sagittal planes,
{a,,b,,c,} - measures of axial unit vectors,

symmetry axes of the 2nd, 3rd, 4th, 6th orders in
the texture,
m - normal to the plane of symmetry.

Fig. 1. Geometric layout of piezoelectric textures

These tables describe the order of the axes of symmetry (and/or inversion) and the
anisotropy planes of the piezocrystals, the commensurability of the unit vectors and angles
of the selected orthogonal system of base coordinates, as well as the order of alignment of
the coordinate system with the base axes and planes of piezocrystals. To formulate the
problems of electroelasticity in piezoelectric media, it is necessary to combine the
coordinate axes and planes with the crystal axes and sagittal planes of the given
piezoelectric texture, respectively.

Without loss of generality, let us formulate the problem of linear electroacoustics in one

of the sagittal planes of the piezocrystal X, O)C[3 , where all components of the electroelastic
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field depend on the coordinates X, andx,, and there are no changes in the electro-

mechanical characteristics of the field along the third base coordinate O [*] / ox, =0

Table 1. Crystal installation rules according to syngonies

Crystalline | crystallographic axis of the | angles in the sagittal | measures of axial

textures texture planes unit vectors

Triclinic X, %%, 2 LT Lo, =By £y, 290" | a,#b, #¢,
Monoclinic Xy 22 or m Oy =Y, = 90° = B, a, #b, # ¢,

Rhombic xa,xﬁ,xy;)20rm OLO:BOZYOZQOO a0¢b0¢00

xa,xﬁﬁlm,

Tetragonal o, =By =7, = 90° a,=b, #c,

X, =44
—> . _ _ 0
Trigonal and Xy Xg E225m, a, =B, =90", d=b e
Hexagonal X, =3:3,6:6 Yo = 120° 0 0 0
Cubic X Xp,x, 2442 o, =B, =7,=90"| a,=h =c,

In the linear theory of electroelasticity of homogeneous piezoelectric media, the two-
dimensionalcomplete system of quasi-static equations written in a crystallographic
coordinate system is used[13, 14, 15]

2 2
00, (%, %.1)/0x, = p( 8w, (x,..x,.1) /01 ). 8D, (x,,%,,1) /&, =0, (1.2)
where (xa,xﬁ,t ) are the elastic displacement vector components, G i (x,, Xg» 1 ) are the

mechanical stress tensor components, D, (xa,xﬁ,t) are the electrical displacement vector
components, P is the material density and the indices take on the values j,n € {OL, B} and
ie{a,B,y}.

Generally, the components of the mechanical stress tensor O i (xa > Xg t) and the
components of the electric displacement vector Dm (xa, Xgs t) in the equations (1.2), on the

sagittal planes X, O)C[3 are determined as[13, 14]
6 (X5 X551) = €l m) (8un (X, Xp,0) /O, ) =€, B (X, %,0)
Dy (x4 %550) = €y, (Oun (x, ,xﬁ,t)/ﬁxm ) +&,E, (x,,%,1) (1.3)
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where the mechanical and electric fields are interconnected by the piezoelectric coefficient
tensor (ej(mn)) .

Table 2. Rules for selecting crystallographic axes in textures

crystallographic axis

Crystalline textures X, X x,
Triclinic In a plane perpendicular to the direction [001] [001]
Monoclinic [100] [010] [001]
Rhombic [100] [010] [001]
Tetragonal [100] [010] [001]
Trigonal and Hexagonal [100] [010] [001]
Cubic [100] [010] [001]

The plane quasi-static electric field is potential £, (X, B,t) = —(ﬁ(p(xu, B,t)/ax )
where m € {0; 3} .In problems where elastic waves are accompanied by vibrations of a

plane electric field {Ea (xa,xﬁ,t), Eﬁ (xm, Xg t), 0}, the linear material relations (1.3) of

piezoelectrics are often represented in the form

G, (X, %5,0) = o (8u (xa,xﬁ,t)/axk)+ew (a(p(xa,xﬁ,t)/ax )

D, (x,,x5.0) = e, (8u (xa,xﬁ,t)/ﬁxk) mk(@(p(xa,xﬁ,t)/axk). (1.4)

Obviously, in two-dimensional quasi-static problem of electroelasticity, both elastic
deformations can decompose into the plane {ua(xa,xﬁ,t), uB(xa,xB,t), 0} and

antiplane {0; 0; u, (xa, xﬁ,t )} components, and their accompanying electric field can be

plane{Ea(xa,xB,t), Eﬁ(xa,xﬁ,t), 0} or antiplane{o, 0, Ey(xa,xﬁ,t)}.

Consequently, in piezoelectrics it will be possible to separately excite and propagate an
electroelastic wave of a type from four incomplete sets of its components:
i. Four-component electroelastic wave -

{u, (X, %51, ug(x,,Xg,0), 0, E, (x,,X,0), Ey(x,,Xg,0), O}, electractive

plane deformation with accompanying oscillations of the plane electric field,
ii. Three-component electroelastic wave -

{u,(x,, Xy, 1), Ug(X,,%5,1), 0, 0, 0, E( X, B,t)} electractive plane

deformation with accompanying oscillations of the anti-plane electric field,
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iii. Three-component electroelastic wave -
{0, 0, u, (xa,xﬁ,t), Ea(xa,xﬁ,t), Eﬁ(xa,xﬁ,t), 0}, electractive anti-plane
deformation with accompanying oscillations of the plane electric field,

iv. Two-component electroelastic wave - {0,0, u, (xa,xﬁ,t),O, 0, Ey (xa,xﬁ,t)},
electractive anti-plane deformation with accompanying oscillations of the anti-plane
electric field.

From the selected structures of wave packets, it is obvious that in a particular sagittal plane,
the first from the fourth, or the second and the third packets are separated from each other.

2. Necessary and sufficient conditions for the separation of electroactive elastic states
in a piezoelectric medium

The problems of the possibility for separate excitation and propagation of the waves of
electroactive plane deformation and electroactive elastic wave of anti-plane deformation in
homogeneous piezoelectric materials, were studied in [2, 3]. In these articles it is shown
that in the elastic anisotropic homogeneous media the separation of the plane elastic
deformation wave from the anti-plane elastic deformation wave in a selected sagittal plane

X, ())C[i of the crystalline medium is ensured by the absence of the corresponding constants

in the structure of the elastic stiffness tensor (C‘A(U,)(n,())()X6

Catyor = Can = S = Spror = Claprrr = Clapypy =0 @D

In this case, the electroactive wave of plane deformation accompanied by oscillations of
the plane electric field in piezoelectrics can be separated from the wave of antiplane elastic
deformation, when, along with the conditions (2.1), the conditions for the absence of
piezoelectric coefficients in the generalized electroelasticity tensor (1.1) are satisfied

Cotr) = Carp) = Cpya) = Gpisp) =0 (2.2

The electroactive wave of antiplanar elastic deformation accompanied by oscillations of
a plane electric field in piezoelectrics can be separated from the wave of plane elastic
deformation when, along with the conditions (2.1), the conditions for the absence of other
piezoelectric coefficients in the generalized electroelasticity tensor (1.1) are satisfied

Caton) = Ca(pp) = Epoo) = Gpp = Cacap) = G = 0 23)
The electroactive wave of plane elastic deformation accompanied by the oscillations of
the antiplane electric ﬁeld{uu (xu,xﬁ,t), Ug (xa,xﬁ,t), 0, 0, O, Ey (xu,xﬁ,t)} in

piezoelectrics can be separated from the wave of plane elastic deformation, when, along
with the conditions (2.1), the conditions for the absence of other piezoelectric coefficients
in the generalized electroelasticity tensor (1.1) are satisfied

Coon) = Capp) = Cpiaor = G = Catap) = Gpipay =9 24)
The electroactive wave of the antiplane elastic deformation accompanied by the
oscillations of the antiplane electric ﬁeld{o, 0, uy(xa,xﬁ,t), 0, 0, Ey(xu,x ,t)} in

piezoelectrics can be separated from the wave of plane elastic deformation, when, along

117



with conditions (2.1), the conditions for the absence of other piezoelectric coefficients in
the generalized electroelasticity tensor (1.1) are satisfied

€, a0) =€) = €yap) =0 (2.5)

For separate excitation and propagation of plane or antiplane electroactive stress-strain
states, the above pairs of conditions (2.1) and (2.2), or (2.1) and (2.3), or (2.1) and (2.4), or
(2.1) and ( 2.5) as constraints on the anisotropy of the medium are necessary but not
sufficient.

From material relations (1.4) and the conditions (2.1) and (2.2) corresponding to them,
taking into account the form of the generalized electroelasticity tensor (1.1), it follows that,
in the formulation of the two-dimensional problem of electroelasticity, side by side with

nonzero stresses characteristic of the plane stress state G, (xa,xﬁ,t) Opp (xa,xﬁ,t ) and
Gaﬁ(xa,xﬁ,t) , there also arises an axial mechanical stress G, (xa,xﬁ,t) As well as,

along with the nonzero components of the electric displacement of the plane electric field
D, (xa,xﬁ,t) and Dﬁ (x,, xﬁ,t) , the third component Dv (xa,xB,t) of the electric

displacement vector can arise.
The presence of non-zero axial components of the mechanical stress and the vector of

electrical displacement along the axis ())CY , in the general case will violate the formulation

of the two-dimensional problem of electroelasticity in the material sagittal plane X, O)CB

.Therefore, to fulfill the accepted hypotheses, additional conditions are imposed on the

electromechanical characteristics: the absence of axial mechanical stress G, (x,, Xg» 1 ) and

the axial component of the electric polarization (electric displacement) Dy(xa,xﬁ,t)

perpendicular to the sagittal plane of the piezoelectric crystal.
In all piezoelectric crystals for which conditions (2.1) + (2.5) are satisfied, the dielectric

constant tensors (él.k)3x3 are diagonal. Therefore, the third component of the electric
displacement is represented only by the elastic elongations (81/!& / 8xa), (51,1ﬁ / axﬁ) and
shift (51/[&/(3)6[3) + (('51413 /axu) in the sagittal plane.

It is known that in any basic plane X, O)CB the elastic stiffnessesC,, # 0 and Cp * 0,
as well as the elastic compliance coefficientss,, =(=1)*""-Ac,, / A  and
S, =(=1)* -Acy, / A° cannot be zeros. Therefore, the existence of a non-zero axial
stress Gw(xa,xﬁ,t) can lead to the axial tensions (compressions) rw(xm,xﬁ,t) in the

direction of the axis Oxy , violating the planar deformed state.

Taking into account the above statements, from the material rations of axial mechanical
stress and electrical displacement
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aua(xu7xﬁﬁt)+c auﬁ(xaaxﬁﬁt) auy(xa7x[37t)_

G, (X, Xg,0) =,

axa B axﬁ Y(vB) axﬁ
=€, Eo (X > X5, 1) = €5 By (X X5 0) — €, B (X X, ) + (2.6)
ou, (x,,Xy,1) Ou, (x,,X5,t)  Oug(x,,Xg,1)
T T4 (o) 2 73 g
X, X, X,
ou (x,,x,,t) Oug(x,,x4,1)
D (x X l‘) =e o\ Tar gt e M-ﬁ-
(X Xp5 Y(0cr) 1(8B)
ox, ox,
Ou, (X, Xg,1) Ou, (X, Xg,1)
BT e T 5 + 2.7)
X X,
ou (x_ ,x,,t) Ou,(x_ ,x.,t
+e, o) o (T )+ p (X 2y 1) +e, E (x,,%,,1)
0x, ox,

it follows that in piezoelectric crystals, the formulation of theelectractive plane deformation

with accompanying oscillations of the plane electric ﬁeld{ua (xa,xﬁ,t), Ug (xu,xﬁ,t),

0, Ea (xa,xﬁ, t), E[3 (xa,xﬁ, t), 0} , in the sagittal plane X, O)CB is possible, when

¢, (O, [0x,)+ ¢, (Ou, /0x,) = =C, [ (O, /Ox) + (Buy JOx,) |~
—ea(w)(a(p/ﬁxa) - eﬁ(w)(ﬁ(p/axﬁ) (2.8)
€, (O, [OX,) + €, 5 (1t | Ox,) = —e, . [ (B, 005+ (O, f0x,) |

The system of linear equations (2.6) and -(2.7) has nontrivial (arbitrary) solutions with
respect to elastic elongations (or compressions) ((314OL / 6xa) and (6uﬁ / axﬁ)

Ou, A, |0u, Ouy| e
ox,, A 8_xﬁ+g +yT[ea<w>(a(P/ 0x,) + €y (00/ axﬁ)]

a

(2.9)
Ou, A,|ou Ou e
B _"p a B |y Zvlaa)
% _X a_xﬁ+ axa " VA [ea(W)(a(p/ax“)+eB(W) (8(p/axﬁ):|

In relations(2.6), (2.7) and (2.8) it is taken into account, that the accompanying plane quasi-
static electric field is potential £ (xa,xﬁ,t) =—00p(x,, xﬁ,t)/axm , where me {a; B}, as
well as the descriptions A = €58, 00a) ~ CraCyipp) * A, = Ctapy ) ~ CopCyapy» and

A

8 = Cyiap)yaa) ~ CraCyop) ATC taken.
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Statement-1. In the chosen sagittal plane X, O)C[3 of the piezoelectric crystal, a four-compo-

nent electroacoustic wave {ua(xa,xﬁ,t),uﬁ(xa,xﬁ,t),0, Ea(xa,xﬁ,t),Eﬁ(xa,xﬁ,t),O}

is possible, if the elements of the generalized electroelastic tensor (1.1) of the medium
satisfy conditions (2.1), (2.2) and the additional functional representation (2.8), according

to which the elastic tensions (91/1OL (xa,xﬁ,t ) / 6xa and 514[3 (xq,xﬁ,t ) / axﬁ in the sagittal
plane are expressed in terms of elastic shear 5ua ()CQL,)CB,t)/a)CB and 5uB (xa, X t)/axa ,

as well as the plane electric field components OQ(x,, X1 ) / 0x, and Op(x,, X1 ) / ('5)6'3 .

From relations (2.6) and (2.7) it also follows, that the formulation of the electractive anti
plane deformation with accompanying oscillations of anti plane electric field

{0, 0, u, (xa,xﬁ,t), 0, 0, Ey (xu,xﬁ,t)} , in the sagittal plane X, OxB of piezoelectric
crystals is possible, when
oy (Ot (%5 X, 1) [ O ) + € (Ot (X, X5, 1) [ OX,) = €, B (X, X5 )

(2.10)
e, (O, (X, X5,0) [Oxy) + e, (Ot (x5 X5,0) [ Ox,) = € E, (X,,, X5, 1)

Since the dielectric constant€, is a positive definite quantity, withthe additional
condition on the coefficients of the generalized electromechanical tensor
Coion) G0 ~ Cyiup) " Cyom) #0, the system of linear equations (2.9) always has nontrivial

solutions with respect to elastic shears 8uy (x,, X t)/axa and 8uy (x,, X5 t)/a)cﬁ

cv(vﬁ)ew ((ev(w)ev(aﬁ))/(cv(vﬁ)sw) + 1)

C

(Ou, (x,,X,1)/0x,) = “E, (3,5 %5,1)

o) “Cvam) vy " Crian)
(51/! (x x l‘)/ax ) _ CY(W)SW ((ev(w)ev(aﬁ))/(Cv(va)gw) +1)
y \ oo B/

Cyan) "Cvam) ~ Gy " Crian

2.11)

“E, (x,,Xg,1)

Statement-2. In the chosen sagittal plane X, OxB of the piezoelectric crystal, a four-

component electroacoustic wave {0, 0, u, (xa,xﬁ,t), 0, 0, Ey(xa,xﬁ,t)} is possible,

if the elements of the generalized electroelastic tensor (1.1) of the medium satisfy
conditions (2.1), (2.5) and the additional functional representation (2.10), according to

which, the shifts auy (xa,xB,t) / axq and ﬁuY (xa,xB,t) / axB in an elastic shear wave are
expressed in terms of the axial component of the accompanying electric field Ev (xa »Xg5 1).

Similarly, from relations (2.6) and (2.7)it also follows, that for the formulation of the two-
dimensional problem of an electractive plane deformation with accompanying oscillations

of the anti-plane electric field {ua (xa,xﬁ,t), U (xa,xﬁ,t), 0, 0, 0, EY (xu,xﬁ,t)} , in
the sagittal plane X, 0x; , the additional conditions are obtained
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(Ouy (x,, %) /0x,) = %[(Gua Jox,) + (Quy fox,) |+

+((ea(w)ev(ﬁﬁ))/(cvﬁsyy)+1).CYﬁ8W “E, (X, Xg,1)
A e

A
(Ouy (x,,x,.1) [Ox,) = Xﬁ[(ﬁua Jox,) + (Quy fox,) |+

(2.12)

+ ((eﬁ(w)ev(aa))/(cvaevv)+ I)OCYGSW E (x ,XB,I)
A e

The non trivial presentations (2.11) for axial elongations (or compression)
(ﬁua(xa,xﬁ,t)/ ox,) and(@uﬁ(xa,xﬁ,t)/ﬁxﬁ), in this case are possible with the
additional condition on the coefficients of the generalized electro elastic tensor

#0.

Sy “Gem) ~ Crm) "yt
Statement-3. In the chosen sagittal plane X OxB of the piezoelectric crystal, a four-
component electroacoustic wave {ua(xm’xﬁ’t)’ uﬁ(xa’xﬁ’t)’ 0, 0, 0, Ey(xa,xﬁ,t)}

is possible, if the elements of the generalized electroelastic tensor (1.1) of the medium
satisfy conditions (2.1), (2.4) and the additional functional representation (2.11), according

to which the elastic tensions Ou,, (xa,xﬁ,t) / 0Ox, and 8uB (xa,xﬁ,t) / 8xﬁ in the sagittal
plane are expressed in terms of elastic shear Ou,, (x,, , Xg, 1) / 0Ox; and Oug (x,,, Xg, 1) / ox, .
as well as the shear electric field Ey (xa,xﬁ, t).

In the case of the electractive anti-plane deformation with accompanying oscillations of

the plane electric field {0, 0, uy(xa,xﬁ,t), 8(p(xa,xﬁ,t)/xa, a(p(xa,xﬁ,l‘)/xﬁ, 0}
, in the sagittal plane X OxB’ the additional conditions imposed on the structure of the

electromechanical generalized tensor are obtained similar to C, .\ €8y ~Cy0p) Cyay) * 0.

Under these condition on the coefficients of the generalized electromechanical tensor (1.1),
we obtain the additional non trivial presentations with respect to elastic shears

Ou (%, X5, 1) / Ox, andOu, (X, ,Xy,1) / ox,
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e
(Ou /axa) = a(yr) (ﬁ(p(xa,xﬁ,t)/axa)'i'
! S (ev(ow)/ €,p)) = Cyan)

(4
P (0(x,,, x5,1) /0x,)
Cp) (€yan) / €)™ Cyap) 2.13)
e
(Ou, [0x,) = PCro) (09(x,,x,1) /Ox,) +
! Cyya) (ev(ﬁv)/ev(va)) Sy

e(X

+ (W) (a(p(xa5xﬁ’t)/axa)

S0 € /€)= Coapn
Statement-4. In the chosen sagittal plane X, O)C[3 of the piezoelectric crystal, a four-compo-

nent electroacoustic wave {0,0,14, (X, X, 1), (X, » X1 /0%, , OQ(X,.» ;1)) %, 0}

is possible, if the elements of the generalized electroelastic tensor (1.1) of the medium
satisfy conditions (2.1), (2.3) and the additional functional representation (2.12), according

to which, the shifts 8uy (xa, Xgs t) / axa and 5uY (xq > Xg s t) / 6xﬁ in the elastic shear wave

are expressed in terms of the axial component of the accompanying plane electric field
Op(x,,,X,,1) [ Ox,, and OQ(x,, x,,1) /O

Along with the necessary conditions for separate excitation and propagation of
electroactive multicomponent waves (2.1) and one of (2.2)+(2.5), additional conditions
(2.8),(2.10), (2.11), (2.12) are obtained, which are sufficient for the formulation of the two-
dimensional problem of electroelasticity. In each case of studying the electroelastic two-
dimensional problem, it is necessary along with the material relations of the medium to take
into account additional representations of elastic elongations and shears (2.8), (2.10), (2.11)
and (2.12), respectively.

The necessary conditions for the coefficients of the generalized electroelasticity tensor,
as well as additional sufficient representations of elastic elongations and shifts in the other
two sagittal planes, can be obtained, without repeating all the calculations by simply

rotating the coordinate indices {at, 3, Y} = {y, o, B} = {B, v, o}.

3. Conclusion

The necessary conditions imposed on the coefficients of the generalized electroelasticity
tensor, as well as the additional relations between elastic displacements and electric field
components are formulated that allow the formulation of the two-dimensional problem of
linear electroelasticity.

In two-dimensional electroelasticity of anisotropic piezoelectrics, both purely planar and
purely antiplanar, as well as mixed (planar elastic and antiplanar electric, or antiplanar
elastic and planar electric) multicomponent electroelastic fields are formed.

Taking into account the obtained additional relations between the elastic displacements
and electric field components, the constitutive equations for the nonzero components of the
mechanical stress tensor and the electric displacement vector, as well as the quasi-static
electroelasticity equations for each piezoelectric texture, are derived, respectively.
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A catalog of possible multicomponent electroelastic fields in all sagittal planes of all
piezoelectric textures has been compiled.

On the example of relatively simple separately existing electroelastic multicomponent
fields, an example of their practical application in composite waveguides is given.
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