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Ա.Ս. Ավետիսյան 
Բազմաբաղադրիչ էլեկտրաակուստիկ ալիքները (MCEAW) պիեզոբյուրեղային կառուցվածքում. 

Կիրառական հնարավորություններ 

Հիմնաբառեր՝ էլեկտրաառաձգականություն, բազմաբաղադրիչ ալիք, ընդհանրացված տենզոր, 
էլեկտրաակտիվ վիճակ, պիեզոկրիստալային հյուսվածք, ոչ ակուստիկ կոնտակտ, հարթ 
դեֆորմացիա, քվազիստատիկ հավասարումներ: 

Աշխատանքում ցույց է տրվում, որ պիեզոէլեկտրական կառուցվածքի յուրաքանչյուր ընտրված 
հարթությունում և՛ մեկ բաղադրիչով առաձգական սահքի ալիքը, և՛ երկու բաղադրիչով առաձգական 
հարթ դեֆորմացիայի ալիքը կարող է ուղեկցվել կամ ընտրված հարթությանը ուղղահայաց 
էլեկտրական դաշտի բաղադրիչի տատանումներով կամ ընտրված հարթությանը զուգահեռ, հարթ 
էլեկտրական դաշտի տատանումներով: Ձևավորվում են բազմաբաղադրիչ էլեկտրաառաձգական 
ալիքների չորս տիպի փաթեթներ։ Ստացված են, պիեզոբյուրեղի ընտրված հարթությունում, 
էլեկտրաառաձգականության երկչափ խնդրի ձևակերպման անհրաժեշտ և բավարար պայմանները, 
որոնք թույլ են տալիս ձևավորել բազմաբաղադրիչ քվազիստատիկ էլեկտրաառաձգական ալիքի 
առանձին գրգռում և տարածում։ 

Ара С. Аветисян 
Многокомпонентные электроакустические волны (МЭАВ) в пьезокристаллических текстурах: 

прикладные возможности 

Ключевые слова: электроупругость, многокомпонентная волна, обобщенный тензор, электроактивное 
состояние, пьезокристаллическая текстура, неакустический контакт, плоская деформация, квазистатиче-
ские уравнения. 

В данной работе показывается, что в каждой сагиттальной плоскости пьезотекстуры как одноком-
понентная упругая сдвиговая волна, так и двухкомпонентная упругая плоская деформационная волна 
могут сопровождаться либо колебаниями поперечной составляющей электрического поля, либо 
колебаниями плоского электрического поля. Формируются четыре таких пакета многокомпонентных 
электроупругих волн. Получены необходимые и достаточные условия, позволяющие поставить двумерную 
задачу электроупругости в вибрируемой сагиттальной плоскости пьезокристалла, где возможно 
раздельное возбуждение и распространение многокомпонентной квазистатической электроупругой волны.  

In this paper is shown, that in each sagittal plane of the piezoelectric texture, both the one-component elastic shear 
wave and the two-component elastic plane deformation wave can be accompanied by either oscillations of the 
transverse component of the electric field or oscillations of the plane electric field. Four such packets of 
multicomponent electroelastic waves are formed.Necessary and sufficient conditions are obtained that allow the 
formulation of a two-dimensional problem of electroelasticity in a vibrated sagittal plane of a piezocrystal, where 
separate excitation and propagation of a multicomponent quasistatic electroelastic wave is possible. 

https://doi.org/10.54503/0002-3051-2022.75.1-2-111
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Introduction 

In many structural diagrams of modern electronic technology, various new crystalline 
elements, layered composite waveguides, formed from various natural or artificially grown 
piezoelectric materials with different physical and mechanical properties, are widely used. 
The piezoelectric or ferroelectric materials have many distinct properties, negative 
piezoelectric constants and high mechanical flexibility. Piezoelectric or ferroelectric 
materials are widely used in 2D layered functional heterostructures. These new materials 
and heterostructures have broad applications in memory, logic, sensing, optical and energy 
harvesting devices. Piezoelectric crystals are inherently anisotropic structures and the 
operation of such elements is often based on the emission (or delay) of electroacoustic 
waves of incomplete component packages. 

Separate excitation and propagation of a purely transverse elastic wave (SH type waves) 
from a plane deformation wave (P&SV type waves) is possible both in an isotropic medium 
and in all crystal textures of cubic, hexagonal, trigonal, tetragonal and rhombic symmetry 
[1]. A higher anisotropy of the crystal texture leads to the convolution of the components of 
purely elastic waves and, in fact, the separation of components in elastic bodies is uniquely 
determined by the structure of the elastic constant tensor.   

In contrast to a purely elastic medium, where two types of waves can propagate 
separately: a two-component wave of the plane stress-strain state (P&SV type wave) and a 
single-component anti-plane deformation wave (SH type wave), in a piezoelectric medium, 
four different incomplete sets of multicomponent electroelastic waves can propagate 
separately. The properties of piezoelectric media are given by the structure of the 
generalized tensor of electromechanical constants. Therefore, in the case of piezoelectric 
media, the group of those symmetries and classes of crystals is significantly narrowed, in 
the sagittal planes of which separate excitation and propagation of the indicated types of 
electroelastic waves are possible.   

The possibility of the separate excitation and propagation of an electroactive elastic 
plane deformation wave from thenon-electroactive shear elastic wave or separate excitation 
and propagation of an electroactive shear elastic wave from a non electroactive elastic plane 
deformation wave, depending on the physical properties of the piezoelectric medium, was 
studied in the articles [2, 3]. However, the other new cases when separate excitation and 
propagation of two electroactive wave packets are possiblehave not been considered yet. 

The ability to formulate the problem of excitation and propagation of incomplete 
multicomponent electroelastic waves is due to both the anisotropy of the medium and the 
admissibility of setting a two-dimensional problem in one of the sagittal planes of an 
anisotropic medium.   

As a rule, structural elements used in modern technology are thin-walled and in the 
formulation of two-dimensional problems, we must take into account possible approaches 
that allow separate formulations of the problems of electroactive plane deformation and 
electroactive anti-plane deformation.  

The mathematical formulation of the two-dimensional problem of electroelasticity in 

any of the sagittal planes 0x x   of the piezoelectric texture requires the observance of 

several well-known hypotheses: 
i) The hypothesis of straight normal. 
ii) The hypothesis of the inextensibility of the middle surface of the plate. 
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iii) The hypothesis about the absence of pressure of the material layers on 
each other.   

Adhering to the physical essence of these hypotheses, in applied problems of thin-
walled elastic elements of structures, the two-dimensional problem of the theory of 
elasticity was mathematically modeled in different ways by many researchers Kirchhoff G. 
[4], Timoshenko S., Woinowsky-Krieger S. [5], Reissner E. [6], Ambartsumian S.А. [7].In 
each of these cases, the hypotheses were accepted as additional restrictions based on the 
nature of the distribution of the mechanical load on the element and the conditions for 
fixing the end of the elastic element.  

The hypothetical approach has also been successfully implemented in the problems of 
electro-magneto-elasticity of thin plates and shells [8], where, along with hypothetical 
distributions of mechanical characteristics over the thickness of a thin-walled element, 
characteristic distributions of the electromagnetic field are also accepted. 

Naturally, the need to introduce additional restrictions (hypotheses) also arises when 
modeling two-dimensional problems on the propagation of electroelastic waves of plane or 
antiplane deformations in semi-infinite waveguides. In general, in order to fulfill these 
hypotheses, additional conditions are imposed on the electromechanical characteristics:   

a. In the process of deformation, the segment of the straight line normal to 
the sagittal plane does not change. 

b. The characterizing values of the wave-driven process outside the sagittal 
plane do not change.  

c. In the sagittal plane of the piezocrystal, the axial stressandtheaxial 
polarization (electrical displacement)are absent. 

These conditions make it possible to formulate a generalized plane stress-strain state 
also in a cut perpendicular to the selected axis (material plane of zero thickness) of an 
infinite waveguide layer. With loosely supported detached ends of the layer, the principles 
of Saint-Venant [10] and flat sections [9] also work.According to hypotheses, in the case 
when there are no acting axial stress and axial polarization in the selected planes, the elastic 
surface is inextensible, and it cannot be transversely polarized. Such modeling also allows 
formulating an equivalent generalized antiplane stress-strain state. 

In this paper, definitions of possible multicomponent waves (package of wave 
components) are given. The possibility of the separated formulation of two-dimensional 
problems of electroelasticity in piezoelectric textures is investigated.  

As an applied example, it will be shown that non-acoustic contact between the layers of 
an inhomogeneous waveguide makes it possible to create a wave hybrid in it, when 
dissimilar electroacoustic fields are created in its layers.  

1. Some definitions and basic relations of the electroelastic stress-strain state in 
homogeneous piezoelectric media 

Physicomechanical constants of the homogeneous piezoelectric medium: the elastic 

stiffness   ij nmc , piezoelectric coefficients  j mne  and dielectric constant ik , form a 

generalized electroelastic tensor of piezoelectric materials of the type 

       3 6 3 39 9 6 6
ˆ ˆˆ ˆjn ij mn ikc e

  
      [11, 12] 
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 
 
  
 

 (1.1) 

In generalized electroelastic tensor of linear electroelasticity of piezoelectric materials 
(1.1) the notations and known transitions from four-digit indices to two-digit indices 
( )   if       and ( ) 9   if         are used. It is also assumed 

that the indices    ; ; 1;2;3    ,    ,     and    indicated by the Greek 

letters, are dumb, and summation over them is not carried out. 
The conditions permitting separate excitation and propagation of the plane or anti flat 

stress strain states in the uniform piezoelectric medium of this anisotropy, are imposed on 

the structure tensor of elastic material stiffness  
6 6

ˆijc


, as well as on the corresponding 

structures of tensors of piezoelectric coefficients  ˆnjе  and dielectric constant of the 

material  3 3
ˆ ik 
  . 

The generalized linear tensor of electroelasticity (1.1) for each piezoelectric texture, the 
material relations of the medium and the basic equations are determined in accordance with 
the geometric diagram of piezoelectric textures (Fig. 1),according to the rules for installing 
crystals by to crystal syngonies (table 1) and the rules for choosing crystallographic axes in 
them (table 2) [11, 12]. 
 

 

{ , , }X X X   –crystallographic axis of the 

texture, 

0 0 0{ , , }   - angles in the sagittal planes, 

0 0 0{ , , }a b c  - measures of axial unit vectors, 

 symmetry axes of the 2nd, 3rd, 4th, 6th orders in 
the texture,  
m - normal to the plane of symmetry. 

 
Fig. 1.  Geometric layout of piezoelectric textures 

 
These tables describe the order of the axes of symmetry (and/or inversion) and the 

anisotropy planes of the piezocrystals, the commensurability of the unit vectors and angles 
of the selected orthogonal system of base coordinates, as well as the order of alignment of 
the coordinate system with the base axes and planes of piezocrystals. To formulate the 
problems of electroelasticity in piezoelectric media, it is necessary to combine the 
coordinate axes and planes with the crystal axes and sagittal planes of the given 
piezoelectric texture, respectively.   

Without loss of generality, let us formulate the problem of linear electroacoustics in one 

of the sagittal planes of the piezocrystal 0x x  , where all components of the electroelastic 
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field depend on the coordinates x  and x , and there are no changes in the electro-

mechanical characteristics of the field along the third base coordinate   0x     

 

Table 1. Crystal installation rules according to syngonies 

Crystalline  
textures 

crystallographic axis of the 
texture 

angles in the sagittal 
planes 

measures of axial 
unit vectors 

Triclinic , , 1; 1;x x x    0
0 0 0 90       0 0 0a b c   

Monoclinic 2    x or m  0
0 0 090       0 0 0a b c   

Rhombic , , 2  x x x or m    0
0 0 0 90       0 0 0a b c   

Tetragonal 
, 2;x x m  , 

4; 4x  

0
0 0 0 90       0 0 0a b c   

Trigonal and 
Hexagonal 

, 2;x x m  ,   

3; 3;6; 6x   

0
0 0 90    ,  

0
0 120   

0 0 0a b c   

Cubic , , 4; 4;2x x x    0
0 0 0 90       0 0 0a b c   

 

In the linear theory of electroelasticity of homogeneous piezoelectric media, the two-
dimensionalcomplete system of quasi-static equations written in a crystallographic 
coordinate system is used[13, 14, 15] 

 2 2( , , ) ( , , )ij j ix x t x u x x t t         , ( , , ) 0n nD x x t x    ,   (1.2) 

where ( , , )iu x x t   are the elastic displacement vector components, ( , , )ij x x t   are the 

mechanical stress tensor components, ( , , )nD x x t   are the electrical displacement vector 

components,  is the material density and the indices take on the values  , ,j n    and

 , ,i    . 

Generally, the components of the mechanical stress tensor ( , , )ij x x t   and the 

components of the electric displacement vector ( , , )mD x x t   in the equations (1.2), on the 

sagittal planes 0x x   are determined as[13, 14]   

      ( , , ) ( , , ) ( , , )ij n m mij nm m ijx x t c u x x t x e E x x t          ,  

   ( , , ) ( , , ) ( , , )k n m km mk nmD x x t e u x x t x E x x t           (1.3) 
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where the mechanical and electric fields are interconnected by the piezoelectric coefficient 

tensor  ˆ( )j mne .  

 

Table 2. Rules for selecting crystallographic axes in textures 

Crystalline textures 
crystallographic axis   

x  x  x  

Triclinic In a plane perpendicular to the direction [001] [001] 

Monoclinic [100] [010] [001] 

Rhombic [100] [010] [001] 

Tetragonal [100] [010] [001] 

Trigonal and Hexagonal [100] [010] [001] 

Cubic [100] [010] [001] 

 

The plane quasi-static electric field is potential  ( , , ) ( , , )m mE x x t x x t x       , 

where { ; }m   .In problems where elastic waves are accompanied by vibrations of a 

plane electric field{ ( , , ),  ( , , ),  0}E x x t E x x t      , the linear material relations (1.3) of 

piezoelectrics are often represented in the form  

        ( , , ) ( , , ) ( , , )ij n k mij nk m ijx x t c u x x t x e x x t x            ,    

     ( , , ) ( , , ) ( , , )m n k mk km nkD x x t e u x x t x x x t x           . (1.4) 

Obviously, in two-dimensional quasi-static problem of electroelasticity, both elastic 

deformations can decompose into the plane{ ( , , ),  ( , , ),  0}u x x t u x x t       and 

antiplane{0;  0;  ( , , )}u x x t    components, and their accompanying electric field can be 

plane ( , , ),  ( , , ),  0E x x t E x x t       or antiplane 0,  0,  ( , , )E x x t   .  

Consequently, in piezoelectrics it will be possible to separately excite and propagate an 
electroelastic wave of a type from four incomplete sets of its components: 

i. Four-component electroelastic wave - 

{ ( , , ),  ( , , ),  0,  ( , , ),  ( , , ),  0}u x x t u x x t E x x t E x x t            , еlectractive 

plane deformation with accompanying oscillations of the plane electric field, 
ii. Three-component electroelastic wave - 

{ ( , , ),  ( , , ),  0,  0,  0,  ( , , )}u x x t u x x t E x x t         , electractive plane 

deformation with accompanying oscillations of the anti-plane electric field,  
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iii. Three-component electroelastic wave - 

{0,  0,  ( , , ),  ( , , ),  ( , , ),  0}u x x t E x x t E x x t         , electractive anti-plane 

deformation with accompanying oscillations of the plane electric field, 

iv. Two-component electroelastic wave - {0,0, ( , , ),0,0, ( , , )}u x x t E x x t      , 

electractive anti-plane deformation with accompanying oscillations of the anti-plane 
electric field. 

From the selected structures of wave packets, it is obvious that in a particular sagittal plane, 
the first from the fourth, or the second and the third packets are separated from each other.   

2. Necessary and sufficient conditions for the separation of electroactive elastic states 
in a piezoelectric medium  

The problems of the possibility for separate excitation and propagation of the waves of 
electroactive plane deformation and electroactive elastic wave of anti-plane deformation in 
homogeneous piezoelectric materials, were studied in [2, 3]. In these articles it is shown 
that in the elastic anisotropic homogeneous media the separation of the plane elastic 
deformation wave from the anti-plane elastic deformation wave in a selected sagittal plane

0x x   of the crystalline medium is ensured by the absence of the corresponding constants 

in the structure of the elastic stiffness tensor ( )( ) 6 6ˆ( )ij nkc   

( ) ( ) ( ) ( ) ( )( ) ( )( ) 0c c c c c c                  (2.1) 

In this case, the electroactive wave of plane deformation accompanied by oscillations of 
the plane electric field in piezoelectrics can be separated from the wave of antiplane elastic 
deformation, when, along with the conditions (2.1), the conditions for the absence of 
piezoelectric coefficients in the generalized electroelasticity tensor (1.1) are satisfied  

( ) ( ) ( ) ( ) 0e e e e             (2.2) 

The electroactive wave of antiplanar elastic deformation accompanied by oscillations of 
a plane electric field in piezoelectrics can be separated from the wave of plane elastic 
deformation when, along with the conditions (2.1), the conditions for the absence of other 
piezoelectric coefficients in the generalized electroelasticity tensor (1.1) are satisfied 

( ) ( ) ( ) ( ) ( ) ( ) 0e e e e e e                  (2.3) 

The electroactive wave of plane elastic deformation accompanied by the oscillations of 

the antiplane electric field ( , , ),  ( , , ),  0,  0,  0,  ( , , )u x x t u x x t E x x t         in 

piezoelectrics can be separated from the wave of plane elastic deformation, when, along 
with the conditions (2.1), the conditions for the absence of other piezoelectric coefficients 
in the generalized electroelasticity tensor (1.1) are satisfied 

( ) ( ) ( ) ( ) ( ) ( ) 0e e e e e e                  (2.4) 

The electroactive wave of the antiplane elastic deformation accompanied by the 

oscillations of the antiplane electric field 0,  0,  ( , , ),  0,  0,  ( , , )u x x t E x x t       in 

piezoelectrics can be separated from the wave of plane elastic deformation, when, along 
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with conditions (2.1), the conditions for the absence of other piezoelectric coefficients in 
the generalized electroelasticity tensor (1.1) are satisfied 

( ) ( ) ( ) 0e e e          (2.5) 

For separate excitation and propagation of plane or antiplane electroactive stress-strain 
states, the above pairs of conditions (2.1) and (2.2), or (2.1) and (2.3), or (2.1) and (2.4), or 
(2.1) and ( 2.5) as constraints on the anisotropy of the medium are necessary but not 
sufficient. 

From material relations (1.4) and the conditions (2.1) and (2.2) corresponding to them, 
taking into account the form of the generalized electroelasticity tensor (1.1), it follows that, 
in the formulation of the two-dimensional problem of electroelasticity, side by side with 

nonzero stresses characteristic of the plane stress state ( , , )x x t   ( , , )x x t    and

( , , )x x t   , there also arises an axial mechanical stress ( , , )x x t   .As well as, 

along with the nonzero components of the electric displacement of the plane electric field

( , , )D x x t    and ( , , )D x x t   , the third component ( , , )D x x t    of the electric 

displacement vector can arise.  
The presence of non-zero axial components of the mechanical stress and the vector of 

electrical displacement along the axis 0x , in the general case will violate the formulation 

of the two-dimensional problem of electroelasticity in the material sagittal plane 0x x 

.Therefore, to fulfill the accepted hypotheses, additional conditions are imposed on the 

electromechanical characteristics: the absence of axial mechanical stress ( , , )x x t    and 

the axial component of the electric polarization (electric displacement) ( , , )D x x t    

perpendicular to the sagittal plane of the piezoelectric crystal.    
In all piezoelectric crystals for which conditions (2.1) ÷ (2.5) are satisfied, the dielectric 

constant tensors 3 3ˆ( )ik  are diagonal. Therefore, the third component of the electric 

displacement is represented only by the elastic elongations ( )u x   , ( )u x    and  

shift ( ) ( )u x u x         in the sagittal plane. 

It is known that in any basic plane 0x x   the elastic stiffnesses 0c   and 0c  , 

as well as the elastic compliance coefficients ( 1) cs c
      and

( 1) cs c
      cannot be zeros. Therefore, the existence of a non-zero axial 

stress ( , , )x x t    can lead to the axial tensions (compressions) ( , , )r x x t    in the 

direction of the axis 0x , violating the planar deformed state.  

Taking into account the above statements, from the material rations of axial mechanical 
stress and electrical displacement 
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( ) ( ) ( )

( ) ( )

( , , ) ( , , ) ( , , )
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( , , ) ( , , ) ( , , )
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e Е x x t e Е x x t e Е x x t

u x x t u x x t u x x t
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x x x

        
      

  

              

        
   

  

  
    

  
   

   
   

    

 (2.6) 

( ) ( )

( ) ( )

( )

( , , ) ( , , )
( , , )

( , , ) ( , , )

( , , ) ( , , )
( , , )

u x x t u x x t
D x x t e e

x x

u x x t u x x t
e e

x x

u x x t u x x t
e Е x x t

x x

     
      

 

     
   

 

     
     

 

 
  

 

 
  

 

  
    

   

 (2.7) 

it follows that in piezoelectric crystals, the formulation of theеlectractive plane deformation 

with accompanying oscillations of the plane electric field ( , , ),  ( , , ) ,u x x t u x x t     

0,  ( , , ),  ( , , ),  0E x x t E x x t      , in the sagittal plane 0x x   is possible, when 

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

c u x c u x c u x u x

e x e x

e u x e u x e u x u x

           

     

             

                    


              

 (2.8) 

The system of linear equations (2.6) and -(2.7) has nontrivial (arbitrary) solutions with 

respect to elastic elongations (or compressions) ( )u x    and ( )u x    

( )
( ) ( )

( )
( ) ( )

( ) ( )

( ) ( )

euu u
e x e x

x x x

eu uu
e x e x

x x x

   
     

  

   
     

  

                        


                     

 (2.9) 

In relations(2.6), (2.7) and (2.8) it is taken into account, that the accompanying plane quasi-

static electric field is potential ( , , ) ( , , )m mE x x t x x t x     , where { ; }m   , as 

well as the descriptions ( ) ( )c e c e        , ( ) ( ) ( )c e c e          , and 

( ) ( ) ( )c e c e           are taken. 
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Statement-1. In the chosen sagittal plane 0x x   of the piezoelectric crystal, a four-compo-

nent electroacoustic wave{ ( , , ), ( , , ),0, ( , , ), ( , , ),0}u x x t u x x t E x x t E x x t             

is possible, if the elements of the generalized electroelastic tensor (1.1) of the medium 
satisfy conditions (2.1), (2.2) and the additional functional representation (2.8), according 

to which the elastic tensions ( , , )u x x t x      and ( , , )u x x t x      in the sagittal 

plane are expressed in terms of elastic shear ( , , )u x x t x      and ( , , )u x x t x     , 

as well as the plane electric field components ( , , )x x t x    and ( , , )x x t x    .  

From relations (2.6) and (2.7) it also  follows, that the formulation of the еlectractive anti 
plane deformation with accompanying oscillations of anti plane electric field

{0,  0,  ( , , ),  0,  0,  ( , , )}u x x t E x x t      , in the sagittal plane 0x x   of piezoelectric 

crystals is possible, when   

( ) ( ) ( )

( ) ( )

( ( , , ) ) ( ( , , ) ) ( , , )

( ( , , ) ) ( ( , , ) ) ( , , )

c u x x t x c u x x t x e E x x t

e u x x t x e u x x t x Е x x t

                

               

     
         

(2.10) 

Since the dielectric constant  is a positive definite quantity, withthe additional 

condition on the coefficients of the generalized electromechanical tensor

( ) ( ) ( ) ( ) 0c e c e           , the system of linear equations (2.9) always has nontrivial 

solutions with respect to elastic shears ( , , )u x x t x      and ( , , )u x x t x      

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) 1
( ( , , ) ) ( , , )

( ) ( ) 1
( ( , , ) ) ( , , )

c e e c
u x x t x Е x x t

c e c e

c e e c
u x x t x Е x x t

c e c e

         
      

       

         
      

       

   
   

  


  
      

 (2.11) 

Statement-2. In the chosen sagittal plane 0x x   of the piezoelectric crystal, a four-

component electroacoustic wave{0,  0,  ( , , ),  0,  0,  ( , , )}u x x t E x x t       is possible, 

if the elements of the generalized electroelastic tensor (1.1) of the medium satisfy 
conditions (2.1), (2.5) and the additional functional representation (2.10), according to 

which, the shifts ( , , )u x x t x      and ( , , )u x x t x      in an elastic shear wave are 

expressed in terms of the axial component of the accompanying electric field ( , , )Е x x t   . 

Similarly, from relations (2.6) and (2.7)it also  follows, that for the formulation of the two-
dimensional problem of an electractive plane deformation with accompanying oscillations 

of the anti-plane electric field{ ( , , ),  ( , , ),  0,  0,  0,  ( , , )}u x x t u x x t E x x t         , in 

the sagittal plane 0x x  , the additional conditions are obtained   
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            
   

  
             


     

 (2.12) 

The non trivial presentations (2.11) for axial elongations (or compression)

( ( , , ) )u x x t x      and ( ( , , ) )u x x t x     , in this case are possible with the 

additional condition on the coefficients of the generalized electro elastic tensor

( ) ( ) ( ) ( ) 0c e c e           .   

Statement-3. In the chosen sagittal plane 0x x   of the piezoelectric crystal, a four-

component electroacoustic wave{ ( , , ),  ( , , ),  0,  0,  0,  ( , , )}u x x t u x x t E x x t          

is possible, if the elements of the generalized electroelastic tensor (1.1) of the medium 
satisfy conditions (2.1), (2.4) and the additional functional representation (2.11), according 

to which the elastic tensions ( , , )u x x t x      and ( , , )u x x t x      in the sagittal 

plane are expressed in terms of elastic shear ( , , )u x x t x      and ( , , )u x x t x     , 

as well as the shear electric field ( , , )E x x t   .   

In the case of the electractive anti-plane deformation with accompanying oscillations of 

the plane electric field {0,  0,  ( , , ),  ( , , ) ,  ( , , ) ,  0}u x x t x x t x x x t x         

, in the sagittal plane 0x x  , the additional conditions imposed on the structure of the 

electromechanical generalized tensor are obtained similar to ( ) ( ) ( ) ( ) 0c e c e           . 

Under these condition on the coefficients of the generalized electromechanical tensor (1.1), 
we obtain the additional non trivial presentations with respect to elastic shears

( , , )u x x t x      and ( , , )u x x t x      
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 (2.13) 

Statement-4. In the chosen sagittal plane 0x x   of the piezoelectric crystal, a four-compo-

nent electroacoustic wave0,0, ( , , ), ( , , ) ,u x x t x x t x       ( , , ) ,0x x t x   
is possible, if the elements of the generalized electroelastic tensor (1.1) of the medium 
satisfy conditions (2.1), (2.3) and the additional functional representation (2.12), according 

to which, the shifts ( , , )u x x t x      and ( , , )u x x t x      in the elastic shear wave 

are expressed in terms of the axial component of the accompanying plane electric field

( , , )x x t x    and ( , , )x x t x    .  

Along with the necessary conditions for separate excitation and propagation of 
electroactive multicomponent waves (2.1) and one of (2.2)÷(2.5), additional conditions 
(2.8), (2.10), (2.11), (2.12) are obtained, which are sufficient for the formulation of the two-
dimensional problem of electroelasticity. In each case of studying the electroelastic two-
dimensional problem, it is necessary along with the material relations of the medium to take 
into account additional representations of elastic elongations and shears (2.8), (2.10), (2.11) 
and (2.12), respectively.  

The necessary conditions for the coefficients of the generalized electroelasticity tensor, 
as well as additional sufficient representations of elastic elongations and shifts in the other 
two sagittal planes, can be obtained, without repeating all the calculations by simply 
rotating the coordinate indices{ ,  ,  } { ,  ,  } { ,  ,  }           .  

3.  Conclusion 
The necessary conditions imposed on the coefficients of the generalized electroelasticity 

tensor, as well as the additional relations between elastic displacements and electric field 
components are formulated that allow the formulation of the two-dimensional problem of 
linear electroelasticity. 

In two-dimensional electroelasticity of anisotropic piezoelectrics, both purely planar and 
purely antiplanar, as well as mixed (planar elastic and antiplanar electric, or antiplanar 
elastic and planar electric) multicomponent electroelastic fields are formed.  

Taking into account the obtained additional relations between the elastic displacements 
and electric field components, the constitutive equations for the nonzero components of the 
mechanical stress tensor and the electric displacement vector, as well as the quasi-static 
electroelasticity equations for each piezoelectric texture, are derived, respectively. 
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A catalog of possible multicomponent electroelastic fields in all sagittal planes of all 
piezoelectric textures has been compiled. 

On the example of relatively simple separately existing electroelastic multicomponent 
fields, an example of their practical application in composite waveguides is given. 
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