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Abstract: The vacuum expectation values of the field squared and energy-momentum tensor for a 
massless scalar field are investigated in the Milne universe with general number of spatial dimensions. 
The vacuum state depends on the choice of the mode functions in the canonical quantization procedure 
and we assume that the field is prepared in the conformal vacuum. As the first step an integral 
representation for the difference of the Wightman functions corresponding to the conformal and 
Minkowski vacua is derived. The mean field squared and energy-momentum tensor are obtained in the 
coincidence limit. It is shown that the Minkowski vacuum state is interpreted as a thermal one with 
respect to the conformal vacuum. The thermal factor is of the Bose-Einstein type in odd dimensional 
space and of the Fermi-Dirac type in even number of spatial dimensions. 
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1. Introduction 
 
It is well-known that the vacuum state in quantum field theory, in general, depends on the 

choice of the mode functions used in the canonical quantization procedure. If the Bogoliubov β
-coefficient relating two sets of modes is different from zero then the corresponding vacuum states 
are inequivalent. An example, widely considered in the literature (see [1-3] and references therein), is 
provided by the Minkowski and Fulling-Rindler vacua in flat spacetime. The Minkowski vacuum 
corresponds to the modes of inertial observer and it preserves all the symmetries of the Minkowski 
spacetime (is maximally symmetric). The Fulling-Rindler vacuum is realized in the quantization 
procedure based on the modes of uniformly accelerated observers. For those observers horizons are 
present corresponding to the light cones that divide the spacetime into four sections. The right and left 
patches are referred to as the right and left Rindler wedges, respectively. The upper and lower patches 
are covered by the Milne coordinates and are referred to as the Milne universe. 

The line element of the flat spacetime in the Milne coordinates is of the 
Friedmann-Robertson-Walker type with a scale factor being a linear function of the corresponding 
time coordinate. The spacetime is foliated by negative curvature spatial sections. The corresponding 
geometry serves as a simple model for the investigation of quantum-field-theoretical effects in 
time-dependent backgrounds. A relatively large number of problems are exactly solvable and 
motivated by that various aspects of the dynamics of quantum fields in the Milne universe have been 
discussed in [4-13]. In the present paper we consider the local characteristics of the conformal 
vacuum state (referred to as the C-vacuum) for a massless scalar field in the Milne universe. 

The paper is organized as follows. In the next section we present the normal modes and the 
Wightman functions for the C- and Minkowski vacua in the case of a massive scalar field with 
general curvature coupling parameter. The general results are specified for a massless field in section 
3. The expression for the mean field squared and energy-momentum tensor are discussed in section 4. 
The main results are summarized in section 6. 
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2. Wightman functions in conformal and Minkowski vacua 
 

The line element for the ( 1)D + -dimensional Milne universe is expressed as 
 

2 2 2 2 2 2
1( sinh ),Dds dt t dr rd −= − + Ω     (1) 

 
where for the time and dimensionless radial coordinates one has 0 t≤ < ∞ , 0 r≤ < ∞ , and 2

1Dd −Ω  
is the line element on a ( 1)D − -dimensional sphere. The spatial part corresponds to a constant 
negative curvature space covered by the hyperspherical coordinates ( , , )r ϑ φ . For the set of angular 
coordinates we have 1 2( , , )nϑ θ θ θ= … , 0 kθ π≤ ≤ , 1,2, ,k n= …  and 0 2φ π≤ ≤ , where 

2n D= − . Note that the spacetime described by the line element (1) is flat. That is explicitly seen 
introducing new coordinates ( , )T R , with ( , , )R ϑ φ=R , in accordance with 
 

cosh , sinh .T t r R t r= =      (2) 
 

The line element (1) takes the Minkowskian form 2 2 2 2 2
1Dds dT dR R d −= − − Ω  in 

hyperspherical spatial coordinates. As seen from (2), T R>  and the Milne coordinates ( , , , )t r ϑ φ  
cover the patch of the Minkowski spacetime inside the future light cone. In the region corresponding 
to the past light cone we take coshT t r= , sinhR t r= −  with the time coordinate 0t−∞ < ≤ . The 
remaining regions of the Minkowski spacetime, | |R T> , correspond to the Rindler patches. 

Passing to new coordinates ( , )rη , η−∞ < < ∞ , in accordance with 
 

/ , ,at ae ae r r aη η= ≡ =      (3) 
 
where a  is a constant with dimension of length, the line element (1) is presented in a 
conformally-static form 

( ) ( )22 2 2 2 2 2
1sinh .Dds t a d dr a r a dh − = − − Ω    (3) 

 
The line element in the square brackets describes a static spacetime with a constant negative 

curvature space. The curvature radius of the latter is determined by a  and in the limit a →∞  for 
fixed η  and r , from (4) the Minkowskian line element in spherical coordinates is obtained. For 
two spacetime points ( , )T ′ ′R  and ( , )T R  the spacetime interval between them is expressed as 

 
( ) ( )2 2 2 cosh cosh ,T tt h ζ′∆ − ∆ = ∆ −R      (4) 

 
where T T T′∆ = − , ′∆ = −R R R , η η η′∆ = − , and ζ  is defined by the relation 
 

cosh cosh sinh sinh cos cosh .u r r r r θ ζ′ ′= − =    (5) 
 

Here, θ  is the angle between directions ( ),ϑ φ′ ′  and ( ),ϑ φ . In the special case 0θ = , 
corresponding to points on the same radial directions, we have r r rζ ′= − ≡ ∆ . 

Having described the background geometry we turn to the field content. We consider a quantum 
scalar field ( )xϕ  with curvature coupling parameter ξ . The field equation reads 

 



Petrosyan || Armenian Journal of Physics, 2021, vol. 14, issue 4 
 

182 

( )2 0,m Rξ ϕ+ + =�     (6) 
 
where �  is the d’Alembert operator and for background under consideration the Ricci scalar is zero, 

0R = . Let { , }( ) ( )x xσ σϕ ϕ∗  be the complete set of mode functions obeying the field equation and 
specified by the quantum numbers σ . For the modes corresponding to the C-vacuum ( , )pz mσ =  
and 

 ( )
1 /2

1/2
( 1)/2 /2 1

( ) (cosh ) ( ; , ),
sinh

D l
iz iz

pD D
J mt P rx N Y m
t rss ϕ J φ

− −
− −

− −=  (7) 

 
where ( )J xν  is the Bessel function, ( )P xγ

ρ  is the associated Legendre function of the first kind and 
( ; , )pY m ϑ φ  are the hyperspherical harmonics. In (8), 0 z≤ < ∞  and 1( , , , )p nm l m m= …  with 

0,1,2,l = … . For the integers 1 2, , , nm m m…  one has 1 1n n nm m m− −− ≤ ≤  and 

1 2 10 n nm m m l− −≤ ≤ ≤ ≤ ≤ . The coefficient Nσ  is determined by the standard normalization 
condition for the equation (7) and is determined from 
 

 
( )

( )

2
2 ( 1) / 2

.
2 p

z D l iz
N

N mσ

Γ − + +
=  (8) 

 
The factor ( )pN m  comes from the normalization condition for the hyperspherical harmonics 

and its explicit form will not be required in the discussion below. 
The correlations of the vacuum fluctuations of quantum fields at different spacetime points x  

and x′  are determined by the two-point functions. Here we consider the Wightman function. The 
latter can be evaluated by using the mode-sum formula 

 
 ( ) ( )( , ) .W x x x xσ σ

σ

ϕ ϕ∗′ ′= ∑  (9) 

 
The expression of the Wightman function for  the conformal vacuum (denoted here as 

C( , )W x x′ ) can be obtained by using the corresponding formula for the Hadamard function from [13]: 
 

 
( ) ( ) ( )

(1 )/2 /2
2

C /2 1 0
0

1/2 1/2

2 (cos )
( , ) | ( 1 / 2 ) |

2 (sinh sinh )
( ) ( ) ( ) ( ),

D n
l

D
lD

iy iy iy iy

tt l n C
W x x d y y l D iy

nS r r
J mt J mt P u P um m

θ− ∞ ∞

−
=

− −
− − −

′ +
′ = Γ + − +

′

′ ′×

∑ ∫  (10) 

 
where ( )22 2D

DS Dπ= Γ , /2 (cos )n
lC θ  is the Gegenbauer polynomial, and 

 
 cosh , cosh .u r u r′ ′= =  (11) 

 
By using the addition theorem for the associated Legendre functions from [14] (for the 

correction of the missprint see [19]) it can be shown that 
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( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
( )

2/2 /2 /2
1/2 1/2

0

/2/2 /4 2 1/22 2
/42

cos 1 / 2
2

2 1 1 1 / 2 ,
/ 2 1

n l n l n
l iy iy

l

nn n iy
n

nl C l D iy P u P u

P u
u u D iy

n u

θ
∞

− − − −
− −

=

−−
−

  ′+ Γ + − + 
 

 ′= − − Γ − + Γ −

∑
 (12) 

 
with u  given by (6). By using this result, the expression (11) is further simplified as 
 

 ( )
( )

( )( ) ( )
( )

(1 )/2 /2
2 1/2

C /2 /40 2
( , ) ( ) ( ) 1 / 2 .

2 2 1

D n
iy

iy iyD n

P utt
W x x d y yJ mt J mt iy D

uπ

− −
∞ −

−

′
′ ′= Γ + −

−
∫  (13) 

 
The VEVs of the field squared and energy-momentum tensor are obtained from two-point 

functions in the coincidence limit. That limit is divergent and a renormalization is required. In the 
present paper we are interested in the difference of the local characteristics of the C- and Minkowski 
vacua. The latter is obtained from the difference C M( , ) ( , ) ( , )W x x W x x W x x′ ′ ′∆ = − , where 

 

 
( )

( )( )
( ) ( )

( )
( )

221 /2
1 /2

M 1 /2 1 /422

( )
( , ) ,

2

D
D

D D

K m TmW x x
Tπ

−
−

+ −

D − D
′ =

 D − D 

R

R
 (14) 

 
is the Wightman function for the Minkowski vacuum. Here, we assume that | |T∆ > ∆R . Note that, 
in accordance with (5), this corresponds to | | | |ζ η> ∆ . The expressions in the other regions of the 
Minkowski spacetime are obtained by the analytical continuation. The local geometry for both the 
C-vacuum in the Milne patch and for the Minkowski vacuum is the same and, hence, the difference 

C( , )W x x′∆  is finite and can be directly used for the evaluation of the local VEVs. 
 
3. Wightman function for a massless field 

 
The expression (14) for the Wightman function is further simplified for a massless field. In the 

limit 0m →  for the product of the Bessel functions one has 
 

 ( )sinh
( ) ( ) ,iy

iy iy
y

J mt J mt e
y

hπ
π

∆
− ′ ≈  (15) 

 
and the formula takes the form 
 

 ( )
( )

( ) ( )
( )

(1 )/2 2 /2
1/2

C /2 1 /40 2

1( , ) sinh .
22 1

D n
iyiy

D n

P utt DW x x d y y e iy
u

hπ
π

− −
∞ −D

+

′ − ′ = Γ + 
  −

∫  (16) 

 
By using the properties of the associated Legendre function this expression can be rewritten as 
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( ) ( )
( )

( )

( )
( )

(1 )/2

C /2 1 0

2 1 /2
1/2

( 2 2)/42

( , ) 1 sinh
2

1 ,
2 1

D
q q iy

uD

D q
iy

D q

tt
W x x d y y e

P uD q iy
u

hπ
π

−
∞ D

+

− +
−

− −

′
′ = − ∂

− × Γ − + 
  −

∫
 (17) 

 
with q  being a non-negative integer. In the massless limit, by taking into account the relation (5), 
for the Minkowski vacuum one gets 
 

 ( )( )

( )( )
( )( )

( )( )

1 /2

M 1 /2 1 /2

1 / 2
( , ) .

2 2 cosh cosh

D

D D

Dtt
W x x

π ζ h

−

+ −

Γ −′
′ =

− D
 (18) 

 
For the further transformation we will consider the odd and even values for the spatial 

dimension D  separately. 
For even values of spatial dimension, taking 2 1q D= − , the Wightman function is expressed 

as 

 ( )
( )

( ) ( )
/2 1(1 )/2

C 1/2/2 0
( , ) tanh cosh .

sinh2 2

DD
iy

iyD

tt
W x x d y y e Pζ hπ ζ

ζπ

−−
∞ D

−

′ ∂ ′ = −  
−  

∫  (19) 

 
The corresponding function for the Minkowski vacuum is presented in the form 
 

 ( )( )

( )

/2 11 /2

M /23/2

1( , ) .
sinh cosh cosh2 2

DD

D

tt
W x x ζ

ζ ζ hπ

−−′ ∂ ′ = −   − D−  
 (20) 

 
For the evaluation of the difference of the Wightman functions it is convenient to present 

M ( , )W x x′  in an integral form 
 

 ( )( )

( )
( ) ( )

/2 11 /2

M 1/2/2 0
( , ) cos cosh .

sinh2 2

DD

iyD

tt
W x x d y y Pζ h ζ

ζπ

−−
∞

−

′ ∂ ′ = − D 
−  

∫  (21) 

 
Here we have used the relation [16] 
 

 ( ) ( )1/20

1cos ,
2 coshiyd y yv P w

w v
∞

− =
−∫  (22) 

 
valid for coshw v> . Thus, for the difference of the Wightman functions we get 
 

 ( )
( )

( ) ( ) ( ) ( )(1 )/2 /2 1
1/2

/2 2 2 ( 2)/40

2cos
( , ) tanh sin ,

1 ( 1)2 2

D D
iy

D y D

P utt y
W x x d y i y y

e uπ

h
π h

π

− −
∞ −

−

′ D 
′D = − D + −−  

∫  (23) 

 
where the relation ( ) ( )2 1 2 (2 ) 4 2 1

1 2 1 2( 1)D D D
u iz izP u u P u− − −

− −∂ = −  was used. 
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Now we pass to the odd values of D . For this case in (18) we take ( 3) 2q D= −  and the 
associated Legendre function in the integrand of (18) is reduced to the function ( )1 2

1/2iyP u−
− . The latter 

is expressed in terms of elementary functions and for ( )2 2η ζ∆ ≠  one gets 
 

 ( )
( )( )

( )

( )

3 /2(1 )/2

C 21 /2 2

2 / sinh( , ) ,
sinh2 2

DD

D

tt
W x x ζ ζ ζ

ζ ζ hπ

−−

+

′ ∂ ′ =  
− D−  

 (24) 

 
where ζ  is defined in accordance with (6). For a massless field and for odd values of D  the 
Wightman function (19) for the Minkowski vacuum is presented as 
 

 ( )( )

( )( )

( )3 /21 /2

M 1 /2

1( , ) .
sinh cosh cosh2 2

DD

D

tt
W x x ζ

ζ ζ hπ

−−

+

′ ∂ ′ =   − D−  
 (25) 

 
Here we have used the relation (5). For the difference of the Wightman functions, that 

determines the difference in the local VEVs, we obtain 
 

 ( )
( )( )

( )

( )

3 /2(1 )/2

21 /2 2

2 / sinh 1( , ) .
sinh cosh cosh2 2

DD

D

tt
W x x ζ ζ ζ

ζ ζ hζ hπ

−−

+

 ′ ∂ ′D = −   − D− D−     
 (26) 

 
This representation is well adapted for the evaluation of the differences between local VEVs of 

the field squared and energy-momentum tensor. 
In the discussion above we have considered the difference in the Wightman functions for the C- 

and Minkowski vacua. Similar expressions are obtained for the differences of other two-point 
functions. In particular the VEVs of the field squared are obtained from the Hadamard function 

( , )G x x′ . For odd D  the corresponding expression is obtained from (27) with an additional 
coefficient 2. In the case of even D  from (24) for the difference C M( , ) ( , ) ( , )G x x G x x G x x′ ′ ′∆ = −  
we get 

 ( )
( )

( ) ( )(1 )/2 /2 1
1/2

/2 2 2 ( 2)/40

2 cos
( , ) .

1 ( 1)2

D D
iy

D y D

P utt y
G x x d y

e uπ

η
π

− −
∞ −

−

′ D
′D =

+ −− ∫  (27) 

 
4. VEV of the field squared 

 
As a local characteristic of the C-vacuum first let us consider the VEV of the field squared. It is 

obtained from the Hadamard function in the coincidence limit as 2 lim ( , ) 2
x x

G x xϕ
′→

′∆ = ∆ . If we 

renormalize the corresponding VEV for the Minkowski vacuum to zero, 
(ren)2

M
0ϕ = , then 2ϕ∆  

gives the renormalized VEV for the C-vacuum, 
(ren)2 2

C
ϕ ϕ∆ = . For even values of D  we use the 

relation (see, for example, [17]) 
 

 ( )
( )

( )( )
( )

1 /2/2 1
1/2

( 2)/421

2 1 / 2
lim .

( / 2) ( 3) / 21

DD
iy

Du

iy DP u
D iy Du

−−
−

−→

Γ + −
=
Γ Γ − −−

 (28) 
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The expression for the VEV can be transformed to the form 
 

 ( )( )
1 22

/2 1 0

2 1 / 2 .
( / 2)

D D
y

D
t d ye iy D
D

πϕ
π

− − ∞ −
+D = − Γ + −
Γ ∫  (29) 

 
Alternatively, by using the properties of the gamma function we can see that 
 

 ( )2/2
2

1 20

2(4 ) ,
( / 2) 1

DD
D

D y

y A y
d y

D t e π

πϕ
−− ∞

−D = −
Γ +∫  (30) 

 
where for even D  we have defined 
 

 ( ) ( )
/2 2

2 2

0
1 / 2 / 1 .

D

D
l

A y l y
−

=

 = + + ∏  (31) 

 
As seen, the VEV is always negative. 

For odd values of D  it is convenient firstly to put 0η∆ = , 0θ =  in the expression (27). With 
this choice we have rζ = ∆ . The VEV of the field squared is presented as 

 

 ( )

1
2

1 /2 ,
12(2 )

D
D

D

b tϕ
π

−

+D = −  (32) 

 
where the coefficient Db  is defined by the relation 
 

 ( ) ( )
( )

1/221
3 /22

1

2 1 16( 1) lim .
arccosh u 1

D
D

D uu

u
b

u

−
−

−

→

 −
 = − ∂ −

− 
 

 (33) 

 
In particular, 

 3 5 7 9
11 191 24971, , , .
30 630 6300

b b b b= = = =  (34) 

 
It is of interest to note that the expression (33) can also be written in the form 
 

 ( )2/2
2

1 20

2(4 ) ,
( / 2) 1

DD
D

D y

y A y
d y

D t e π

πϕ
−− ∞

−D = −
Γ −∫  (35) 

 
where for odd D  

 ( ) ( )
( )3 /2

2 2

0
/ 1 .

D

D
l

A y l y
−

=

= +∏  (36) 

 
As before, the VEV is negative. We can combine the expressions for even and odd values of the 

spatial dimension in a single formula 

 2
1 ,D

D
B
t

ϕ −D = −  (37) 
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where 

 
( )

( )

2/2

20

2(4 ) .
( / 2) 1

DD
D

D Dy

y A y
B d y

D e π

π −− ∞
=

Γ + −∫  (38) 

 
5. VEV of the energy-momentum tensor 

 
In this section we will consider the VEV of the energy-momentum tensor. Through the Einstein 

semiclassical equations it determines the backreaction of quantum effects on the background 
geometry. By taking into account that for the background under consideration the Ricci tensor is zero, 
the difference in the VEVs for the C- and Minkowski vacua, C Mik ik ikT T T∆ = − , is evaluated on 
the basis of the formula 

 

 ( ) 21 1lim , ,
2 4ik i k ik i kx x

T G x x gxx  ϕ′′→

  ′∆ = ∂ ∂ ∆ + − − ∇ ∇ ∆    
�  (39) 

 
where i∇  is the covariant derivative operator and ξ  is the curvature coupling parameter. If we 
renormalize the VEV for the Minkowski vacuum to zero, then ikT∆  gives the mean 
energy-momentum tensor for the C-vacuum. Relations between the separate components follow from 
the symmetry of the problem and from general relations. First of all, the spatial geometry is isotropic 
and the stresses are equal, 1 2

1 2
D

DT T TD = D = = D . Next, by taking into account that all the 

components depend on the time coordinate only, from the covariant continuity equation 0k
k iT∇ =  

we get 

 ( )1 0
1 01

1 .D
tDT t T

Dt −D = ∂ D  (40) 

 
Additionally, one has the trace relation 
 

 2( ) ,i
i DT D ξ ξ ϕD = − D�  (41) 

 
where ( 1) (4 )D D Dξ = −  is the curvature coupling parameter for a conformally coupled field. By 
taking into account that 2 11 Dtϕ −D ∝  it is easy to see that 2 0ϕ∆ =�  and, hence, the VEV of 

the energy-momentum tensor is traceless. This leads to the relation 0 1
0 1T D TD = − D  between the 

energy density and the stresses. From this relation and from (41) we get 
 

 ( )1 diag 1, 1 , , 1 .k D
i D

CT D D
t +D = − … −  (42) 

 
The problem is reduced to the evaluation of the constant DC . 
We will evaluate the component 11T∆ . For the derivative in the last term of (40) one obtains 
 

 ( )2 2
1 1 1 .Dϕ ϕ∇ ∇ D = − D  (43) 
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For the evaluation of the first term we consider the cases of even and odd D  separately. For 
even D  the difference of the Hadamard functions is given by (28). Taking 0θ = , 0η∆ = , in the 
coincidence limit we get 

 

 ( )
( )

( )/2 11
1/22

1 1 /2 2 /2 10 1

cosh1 1lim , lim .
2 1 sinh2

DD
iy

rD y Dx x u

P rtG x x d y
e rππ

−− ∞ −
′ D −′→ →

D
′∂ ∂ D = − ∂

+ D− ∫  (44) 

 
From the recurrence relations for the associated Legendre function the following relation can be 

shown: 

 
( ) ( ) ( )/2 1 /2 1 /2

1/2 1/2 1/22
/2 1 /2 1 /2

cosh cosh cosh
cosh .

sinh sinh sinh

D D D
iy iy iy

r D D D

P r P r P r
r

r r r

− +
− − −

D − −

DDD 
∂ = + D

DDD 
 (45) 

 
The contribution of the first term in the right-hand side tends to zero in the limit 0r∆ →  and 

we get 

 ( ) ( )( )
/2 1 2

1 1 1 0

1 2lim , 1 / 2 .
2 ( / 2)

D D
y

Dx x
G x x d ye iy D

D D t
ππ− − − ∞ −

′ −′→
′∂ ∂ D = − G + +

G ∫  (46) 

 
Substituting (44) and (47) into (40) with 1i k= =  and comparing with (43) for even values of 

D  one finds 
 

 
( )( ) ( ) ( )

( ) ( ) ( )

/2 1 2 2

0

21 /2
2

20

1 / 2 1
2 ( / 2)

2 1 ,
( / 2) 1

D
y

D DD

DD D
D

Dy

C d ye iy D y D D
D

y A y
d y y D D

D e

π

π

π ξ ξ

π ξ ξ

− − ∞ −

−− − ∞
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where ( )DA y  is given by (32). 

In the case of odd D , as in the case of the mean field squared, we can take 0η∆ =  and   
0θ = . For the coincidence limit of the derivative of the Hadamard function we get 
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By taking into account that coshu r= ∆ , we see that 2 2 2( 1)r u uu u∆∂ = ∂ + − ∂ . The contribution 

of the last term vanishes in the limit r r′→  ( 1u → ) and by using the definition (34) one obtains 
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This result with the combination of (33) and (44) leads to the following expression for the 

coefficient in (43): 
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It can be checked that the latter expression, valid for odd values of D , may also be written in 
the integral form 

 ( ) ( ) ( )
21

2
/2 20

2 1 ,
( / 2) 1

DD
D

D DD y

y A y
C d y y D D

D e π ξ ξ
π

−− ∞
 = − + − − Γ −∫  (51) 

 
with ( )DA y  defined by (32). 

Let us compare the differences 2ϕ∆  and ikT∆  with the differences in the corresponding 
VEVs between the Fulling-Rindler and Minkowski vacua. The right Rindler wedge is covered by the 
coordinates R R( , , )τ χ x , with Rτ−∞ < < +∞ , 0 χ≤ < ∞ , 2

R R R( , , )Dx x= …x , and the corresponding 
line element has the form 

 2 2 2 2 2
M R R.ds d d dχ τ χ= − − x  (52) 

 
For a massless field, the difference of the mean field squared in the Fulling-Rindler and 

Minkowski vacua is given by the expression [18] 
 

 2 2
1FR M

,D
D

Bϕ ϕ
χ −− = −  (53) 

 
where the coefficient DB  is the same as in (39). The difference in VEV of the energy-momentum 
tensor is expressed as (no summation over i ) 
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where 
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For a conformally coupled massless field one gets 
 

 ( )1FR M
1, 1 , , 1 ,diagk k D

i i D
CT T D D
χ +− = − … −  (56) 

 
with the same coefficient as in (43). For non-conformally coupled fields the stresses for the 
Fulling-Rindler vacuum are anisotropic. 

 
6. Conclusions 

 
The Milne universe is well suited for studying various aspects of the influence of background 

geometry on the properties of quantum fields. In particular, the study of properties of vacuum state is 
of special interest. We have investigated the local properties of the C-vacuum for a massless scalar 
field. Among the most important local characteristics are the expectation values of the field squared 
and energy-momentum tensor. They are obtained from the two-point functions in the coincidence 
limit of the arguments. For the renormalization of the VEVs the subtraction of the corresponding 
VEVs for the Minkowski vacuum is sufficient. This is related to the fact that the Milne universe is flat 
and the divergences in the VEVs for C- and Minkowski vacua are the same. 
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For a massless scalar field we have derived relatively simple representations for the difference 
in the Wightman and Hadamard functions for C- and Minkowski vacua. The renormalized mean field 
squared for C-vacuum is directly obtained from the difference taking the coincidence limit. For the 
evaluation of the renormalized mean energy-momentum tensor we have used the formula (40). The 
mean field squared is given by (38) with the coefficient (39). From the symmetry of the problem it 
follows that VEV of the energy-momentum tensor should have the form (43). In order to obtain the 
expression for the coefficient DC  we have evaluated the 11-component. The coefficient is given by 
(48) for even D  and by (52) in odd spatial dimensions. The formulas for the mean field squared and 
energy-momentum tensor show that, from the point of view of the quantization procedure in terms of 
the mode functions based on the line element (1), the Minkowski vacuum appears as a thermal state. 
It is of interest to note that thermal factor is the Bose-Einstein one for odd number of spatial 
dimensions and Fermi-Dirac type in even number of spatial dimensions. We have emphasized that 
this feature is also present in the relations between the VEVs in Fulling-Rindler and Minkowski 
vacua. Similar features between the hyperbolic and Bunch-Davies vacua in de Sitter spacetime have 
been discussed in [15,19]. 
 
Acknowledgments 

 
I am indebted to Prof. Aram A. Saharian for constant support and valuable advice. I am also 

grateful to Prof. Levon Sh. Grigoryan and Prof. Roland M. Avagyan for encouraging discussions and 
productive colaboration. 
 
Funding 

The work was supported by the Committee of Science of the Ministry of Education, Science, 
Culture and Sport RA in the frames of the research projects No. 20AA-1C005 and No. 21AG-1C047. 
The work was partly supported by the "Faculty Research Funding Program 2020" (PMI Science and 
Enterprise Incubator Foundation). 
 
References 
 
[1]  N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982). 
[2]  S.A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time (Cambridge University Press, Cambridge, 

1996). 
[3]  L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80 (2008) 787. 
[4]  C.M. Sommerfield, Ann. Phys. 84 (1974) 285. 
[5]  D. Gromes, H. Rothe, B. Stech, Nucl. Phys. B 75, 313 (1974). 
[6]  A. diSessa, J. Math. Phys. 15 (1974) 1892. 
[7]  P.C.W. Davies, S.A. Fulling, Proc. R. Soc. Lond. A. 354 (1977) 59. 
[8]  T.S. Bunch, Phys. Rev. D 18 (1978) 1844. 
[9]  T.S. Bunch, S.M. Christensen, S.A. Fulling, Phys. Rev. D 18 (1978) 4435. 
[10] K. Yamamoto, T. Tanaka, M. Sasaki, Phys. Rev. D 51 (1995) 2968. 
[11] T. Tanaka, M. Sasaki, Phys. Rev. D 55 (1997) 6061. 
[12] A. Higuchi, S. Iso, K. Ueda, K. Yamamoto, Phys. Rev. D 96 (2017) 083531. 
[13] A.A. Saharian, T.A. Petrosyan, Symmetry 12 (2020) 619. 
[14] P. Henrici, Journal of Rational Mechanics and Analysis 4 (1955) 983. 
[15] A.A. Saharian, T.A. Petrosyan, V.S. Torosyan, Ann. Phys., accepted for publication. 
[16] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series II (Gordon & Breach, New York, 1986). 
[17] F.W. Olver, D. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge 

University Press, USA, 2010). 
[18] A.A. Saharian, Class. Quantum Grav. 19 (2002) 5039. 
[19] A.A. Saharian, T.A. Petrosyan, Phys. Rev. D 104 (2021) 065017.  
 

https://www.researchgate.net/profile/Daniel-Lozier?_sg%5B0%5D=yCp5T6g7LczBuzSlfBI6Fxe1DdK__XUuI-ITMrcz0I36pELHHIY-gSP8MQMBiBN8aLbNjiQ.6mkYkwhQ3xhMRAcAVwEkBBQUaSyw9qj4ogErJt93PBgKm6zmZA_TfzCA-DcymrB-cZrP4S5zK84xmlUnP6EZEw.8dqEATBngiNnQHZV6EyvTiUbslwT6QeTqQNKCTb1m3y9yu6Ashtho1RZcztEko5zJiLphfj7xTYBUZmosPqIPQ&_sg%5B1%5D=EXQFc8R7fsxNgdDqUMs4ASSUtSlmGjfs3n66mRLmFyLAo4zwUcdwVIu7vYzI2QQ5MYPljYQ.rSeEWV44eSE9-or1uc02GZWpmvioVvx1nf4oYV71xc2EmMJx4HAg8tsKjw8C2A0uRe0RSg2x0lAFZOW7KakE6w
https://www.researchgate.net/profile/Ronald-Boisvert?_sg%5B0%5D=yCp5T6g7LczBuzSlfBI6Fxe1DdK__XUuI-ITMrcz0I36pELHHIY-gSP8MQMBiBN8aLbNjiQ.6mkYkwhQ3xhMRAcAVwEkBBQUaSyw9qj4ogErJt93PBgKm6zmZA_TfzCA-DcymrB-cZrP4S5zK84xmlUnP6EZEw.8dqEATBngiNnQHZV6EyvTiUbslwT6QeTqQNKCTb1m3y9yu6Ashtho1RZcztEko5zJiLphfj7xTYBUZmosPqIPQ&_sg%5B1%5D=EXQFc8R7fsxNgdDqUMs4ASSUtSlmGjfs3n66mRLmFyLAo4zwUcdwVIu7vYzI2QQ5MYPljYQ.rSeEWV44eSE9-or1uc02GZWpmvioVvx1nf4oYV71xc2EmMJx4HAg8tsKjw8C2A0uRe0RSg2x0lAFZOW7KakE6w
https://www.researchgate.net/profile/Charles-Clark-2?_sg%5B0%5D=yCp5T6g7LczBuzSlfBI6Fxe1DdK__XUuI-ITMrcz0I36pELHHIY-gSP8MQMBiBN8aLbNjiQ.6mkYkwhQ3xhMRAcAVwEkBBQUaSyw9qj4ogErJt93PBgKm6zmZA_TfzCA-DcymrB-cZrP4S5zK84xmlUnP6EZEw.8dqEATBngiNnQHZV6EyvTiUbslwT6QeTqQNKCTb1m3y9yu6Ashtho1RZcztEko5zJiLphfj7xTYBUZmosPqIPQ&_sg%5B1%5D=EXQFc8R7fsxNgdDqUMs4ASSUtSlmGjfs3n66mRLmFyLAo4zwUcdwVIu7vYzI2QQ5MYPljYQ.rSeEWV44eSE9-or1uc02GZWpmvioVvx1nf4oYV71xc2EmMJx4HAg8tsKjw8C2A0uRe0RSg2x0lAFZOW7KakE6w

	180-190

