- 4. В. Е. Караченцева, Астрофизика, 3, 535, 1967.
- 5. В. Е. Караченцева, Сообщ. Бюр. обс., 39, 61, 1968.
- G. de Vaucouleurs, A. de Vaucouleurs, Reference Catalogue of Bright Galaxies, 1964.
- 7. V. A. Ambartsumian, The Structure and Evolution of Galaxies, Interscience Publishers, London-New York-Sydney, 1965, p. 1.

ВТОРАЯ ВСПЫШКА ЕХ ТЕЛЬЦА

На семидесяти пластинках, полученных Г. С. Бадаляном на 21" и 40" телескопах Шмидта, нами был оценен блеск девяти уже известных вспыхивающих звезд в Тельце с целью выявления у них повторных вспышек. Эффективное время наблюдений порядка 31 часа.

У DF, DK, EY, FF, DN, FH, FI, FK Тельца значительных колебаний блеска, которые могли бы быть квалифицированы как вспышки, не было замечено.

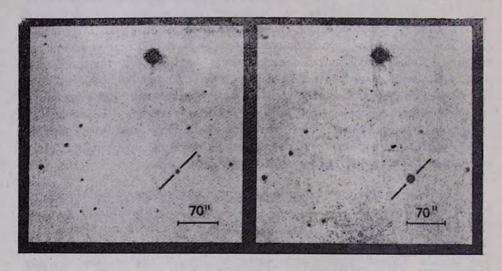


Рис. 1. EZ Тельца. Справа—в состоявии нормального: блеска, слева—в исмент вспышки.

Лишь у ЕZ Тельца 14.II.1963 года (ЮД 2438 348.304) было вафиксировано сильное увеличение блеска до $m_{\rm pg}=13^{\rm m}4$. На снимках, полученных 18 часами ранее и 40 минутами позже, как и на всех остальных снимках, блеск звезды постоянен и близок к значениям $m_{\rm pg}=17^{\rm m}78$ и $m_{\rm py}=16^{\rm m}10$.

Большая амплитуда изменения блеска 4²⁴ и кратковременность явления говорят о том, что обнаружена новая вспышка переменной.

Первая вспышка, которую наблюдал Аро [1], имела сравнительно небольшую амплитуду 1...7.

EZ Тельца — первая вспыхивающая звезда в Тельце, у которой наблюдалась вторая вспышка.

Поскольку все использованные снимки имеют одиночные изображения (а не цепочки изображений, которые применяются специально для обнаружения вспышек) и экспозиции являются относительно длинными, на них было бы трудно обнаружить кратковременные вспышки с небольшой амплитудой. Однако уже вспышки с амплитудой большей, чем две величины, могли быть обнаружены.

A second flare-up of EZ Tau. A flare-up of EZ Tau with amplitude 4. 4 pg has been observed on November 14, 1963.

12 июня 1970 Бюрананская астрофизическая обсерватория

A. K. EPACTOBA

ЛИТЕРАТУРА

 G. Haro, Stars and Stellar Systems, V. 7, ed. B. M. Middlehurst and L. H. Alier, Univ. of Chicago Press, Chicago, 1968, p. 141.

КРИТИЧЕСКИЕ ПАРАМЕТРЫ ХОЛОДНЫХ БЕЛЫХ КАРЛИКОВ С УЧЕТОМ НЕЙТРОНИЗАЦИИ

В работах [1-5] рассматривалось влияние нейтронизации на критические параметры белых карликов. В этой заметке мы снова возвращаемся к этой задаче, полагая, вместе с авторами [1], что в недрах звезды имеются ядра только одного сорта и ограничиваясь ньютоновской теорией тяготения.

Обозначим: μ — молекулярный вес на один электрон, x — импульс Ферми электронов в единицах $m_e c$, x_e — значение x в центре звезды. Если вещество белого карлика испытывает фазовый переход при $x=x_0$, причем μ меняется скачком от μ_1 до μ_2 , то звезды с $x_c>x_0$ являются неоднородными. Конкретно, при бета-захвате ядро ⁵⁶Fe превращается в ядро ⁵⁶Mn, а последнее быстро в ⁵⁶Cr, при энергии электронов, равной 4.20 *Мэв* (с учетом массы покоя), чему соответствует $x_0=8.2$. В этом случае $\mu_2/\mu_1=26/24$.