АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 2

MAPT, 1966

выпуск 1

ОТНОШЕНИЕ ВИРИАЛЬНОЙ МАССЫ К СВЕТИМОСТИ И НЕСТАЦИОНАРНОСТЬ РАЗЛИЧНЫХ СИСТЕМ ГАЛАКТИК

И. Д. КАРАЧЕНЦЕВ Поступила 28 декабря 1965

Определены вириальные отношения массы и светимости f для 87 пар. 11 тройных систем, 29 групп и 15 скоплений галантик. Сделан вывод о возрастании в среднем степени пестациопарности систем с ростом их светимостей. Вычислено вириальное отношение массы и светимости для Метагалантики. Получено указание на общность явлений нестационарности систем галантик и расширения Метагалантики.

1. Введение. В литературе неоднократно обсуждался вопрос о несоответствии между оценками масс галактик, сделанными по внутренним движениям в них и полученными путем применения теоремы вириала к скоплениям, группам и парам галактик [1, 2]. У некоторых систем расхождение чрезвычайно велико и достигает полутора — двух порядков. Поскольку определение вириальной массы сопряжено с предположением о стационарности системы, то отказ от него кажется естественным объяснением существующего расхождения. Обстоятельный анализ ситуации в некоторых системах [3-5] показывает, что другие объяснения аномально больших значений вириальных масс не обладают достаточной убедительностью. Однако, при вычислении вириальной массы конкретной системы приходится делать статистические предположения о факторах проекции, связывающих наблюдаемые величины с величинами, которые входят в теорему вириала. Поэтому в случае отдельной системы с малым числом членов всегда существует значительная неопределенность в выводе о ее нестационарности. Наглядным примером может служить детальное рассмотрение Лимбером и Мэтьюсом [6] ситуации в Квинтете Стефана.

Из сказанного выясняется необходимость применения теоремы вириала к возможно большему числу систем галактик для отыскания 6—111

средних численных характеристик их нестационарности. Имеющиеся оценки отношений вириальной массы к светимости f пестрят разнообразием принимаемых значений факторов проекции, величины постоянной Хаббла и других исходных параметров. Чтобы достичь необходимой однородности материала и иметь воэможность сопоставлять вириальные отношения f у пар, групп и скоплений галактик, в настоящей работе искомые значения f для всех систем рассчитаны при единообразных предположениях.

Ланные о лучевых скоростях галактик брались в основном из каталогов [7, 8]. Неисправленные лучевые скорости Пайджа, которые содержатся в морфологическом каталоге Воронцова-Вельяминова [9]. приводились к центру Галактики так же, как и в [7]. Оценки фотографических звездных величин Холмберга, Хьюмасона, Цвикки и других были взяты в порядке предпочтения, указанном в [9]. В некоторых случаях при отсутствии данных эвездная величина галактик оценивалась по эмпирической зависимости "звездная величина — логарифм углового диаметра", построенной для карт Паломарского атласа. Учет галактического поглощения осуществлялся по формуле $2m = 0^m 24 \csc b$: в низких галактических широтах поглощение учитывалось по карте Шарова [10]. Вычисления светимостей систем галактик велись при вначении параметра Хаббла h=75 км cek^{-1} мп c^{-1} и абсолютной фотографической величине Солнца $M_{\odot} = +5^{m}37$. Проекции угловых расстояний между членами в системах галактик были измерены на картах Паломарского атласа.

2. Определение вириальных масс. Если система находится в стационарном состоянии, то кинетическая энергия ее T связана с потенциальной энергией U соотношением

$$2T+U=0. (1)$$

Для системы гравитирующих частиц вто выражение может быть. записано в виде

$$\sum_{l=1}^{N} m_l \Delta v_l^2 = \sum_{\substack{\text{TO BCEM} \\ \text{BDBM}}} \gamma \frac{m_i m_j}{r_{ij}}, \tag{2}$$

где N— число частиц в системе с массами m_l , m_j , пекулярными скоростями относительно центра тяжести Δv_l и взаимными расстояниями r_{lj} , а γ — постоянная тяготения. В системе с большим числом частиц трудно учитывать индивидуальные различия масс, поэтому обычно полагают, что все частицы имеют одинаковые массы. При этом пред-

положении суммарная масса пары галактик, находимая из теоремы вириала, может быть записана как

$$\mathfrak{M} = \gamma^{-1} p \, \rho_{12} \, \Delta v_r^2, \tag{3}$$

где ρ_{12} — расстояние между компонентами пары в проекции на картинную плоскость, Δv_r — разность лучевых скоростей, а p — фактор проекции, зависящий от характера движений в паре. Для круговых движений Пвйдж [11] получил $p=\frac{32}{3\pi}$, для радиальных — p равно $\frac{16}{\pi}$, а

при случайном характере движений — $\frac{12}{\pi}$ [12]. Заметим, что использованное предположение о равенстве масс у галактик в паре несколько занижает определяемую вириальную массу пары. Если считать, что массы галактик пропорциональны их светимостям, то при средней разности звездных величин у компонентов приводимых ниже пар $\Delta m = 0^m 87$ вириальная масса получается на $17^0/_0$ больше, чем вычисленная по формуле (3).

Для групп галактик при случайном характере движений в них и условии сферической симметрии фактор проекции был вычислен Лимбером и Мэтьюсом [6]. В предположении равенства масс членов группы суммарную вириальную массу группы можно выразить в виде

$$\mathfrak{M} = \gamma^{-1} 3\pi \frac{N}{N-1} \tilde{\rho} < \Delta v_r^2 >, \tag{4}$$

где N— число членов группы, p— среднее гармоническое расстояние между членами группы в проекции на картинную плоскость, а $<\Delta v_r^2>$ — среднее значение квадрата дисперсии лучевых скоростей.

В случае скоплений галактик удобно пользоваться выражением потенциальной энергии через подсчеты галактик в параллельных полосах одинаковой ширины; тогда при тех же предположениях случайного
характера движений, равенства масс членов и сферической симметрии
полная масса скопления равна

$$\mathfrak{M} = \gamma^{-1} \frac{3 \Delta y < \Delta v_r^2 >}{\sum_{l=1}^{\infty} \varphi_l^2(y)},$$
 (5)

где Δy — ширина полосы подсчетов, а $\varphi_l(y)$ — доля галактик в i-той полосе.

Определяя по формулам (3) — (5) вириальные массы систем галактик и деля их на соответствующие интегральные светимости втих

систем, можно получить средние отношения вириальной массы к светимости f для галактик, входящих в системы, и сопоставить их с индивидуальными оценками f по внутренним движениями звезд и эмиссионных областей в галактиках.

3. Оценки f для отдельных галактик. Большинство определений отношения массы к светимости для отдельных галактик сделаны в последние годы Бэрбиджами и их сотрудниками. Сводка оценок f для 42 галактик приведена в табл. 1. В первом столбце приведены номера галактик по каталогу NGC, во втором — оценки отношения массы к светимости в единицах солнечного, далее указаны типы галактик по классификации Хаббла и соответствующие ссылки на работы, в которых вычислены f.

В некоторых случаях, когда с уверенностью можно было судить, что данная галактика принадлежит к группе или скоплению с известными лучевыми скоростями, оценки в были пересчитаны к расстояниям соответствующих систем.

ОТДЕЛЬНЫЕ ГАЛАКТИКИ

Таблица 1

NGC	$f f_{\odot}$	Тип	Литер.	NGC	$f f_{\odot}$	Тип	Литер.
55 157 221 224 253 300 598 681 1084 1792 2146 2782 2903 3031 3034 3115 3379 3504 3521	~6 1.9 13.5 16 ≲9 9 11 3.6 1.9 0.8 ~1 3 7.6 ≲4.2 20 7.4 19 9 ≲1 >4 1.4	Irr Sc E Sb Sc Sc Sc Sc Sb Sc	[13] [14] [13] [14] [13] [15] [16] [13] [17] [18] [19] [20] [13] [21] [13] [13] [13] [13] [13] [13] [13] [1	3623 3646 4111 4258 4406 4472 4486 4631 4736 4826 5005 5055 5128 5248 5457 6503 7331 7469 7479 LMC SMC	15 ~3.4 8.3 ~7.8 32 18 18 5.6 0.5 4.3 2.8 6.1 3 13 0.5 1.2 0.3 0.5 4 7	Sa-b Sc E E E Irr Sb Sb Sc Sc Sc SB Irr	[13] [13] [22] [25] [26] [26] [27] [28] [29] [13] [13] [13] [13] [13] [13] [31] [32] [33] [34]

Как видно, определения f сделаны преимущественно для спиральных галактик. Это обусловлено тем, что у вллиптических галактик

вращение почти незаметно, и массу приходится вычислять из теоремы вириала по дисперсии скоростей звезд в центральных областях галактик. Найденные таким методом оценки f включены в табл. 1 с исправлением к принятым в статье значениям h и M_{\odot} .

Из таблицы видно, что для эллиптических галактик отношение массы к светимости в среднем больше, чем для спиральных. Для 8 эллиптических галактик $f_{\rm E}=(15.5\pm1.7)\,f_{\odot}$, а для 34 спиралей — $f_{\rm S}=(5.4\pm0.9)\,f_{\odot}$. Различия в f у подтипов спиралей мало заметны и не превышают дисперсии значений f. Если принять даваемую Сандэйджем [35] распространенность галактик разных хаббловских подтипов, то для единичного объема Метагалактики можно вычислить среднее значение $f=(8.2\pm1.2)\,f_{\odot}$.

Обращает на себя внимание, что у 25 изолированных галактик среднее отношение массы к светимости составляет 6.1 f_{\odot} , а у 17 галактик, входящих в группы и скопления, — 9.3 f_{\odot} . Значительная часть этого эффекта обусловлена большей распространенностью влиптических галактик в скоплениях и группах, чем в фоне между скоплениями. Однако в отдельности и для эллиптических галактик и для спиральных небольшое различие все же существует.

Рассмотрим теперь вириальные оценки f для пар, групп и скоплений галактик.

4. Пары галактик. При отборе пар галактик для вычисления вириальных масс возникает проблема, как отличать физические пары от оптических. Накладывание каких-либо ограничений на взаимные расстояния и разности лучевых скоростей компонентов всегда привносит нежелательную селекцию. Поэтому критерии того, что считать физической парой, обычно основываются на интуитивных вероятностных соображениях. В некоторых случаях указанием на физическую связь компонентов служит наличие между ними перемычек или других пекулярных образований. Приводимый в табл. 2 перечень пар галактик не содержит пар с расстояниями между членами более 200 кпс, котя такие пары несомненно существуют (М 31 и наша Галактика). В списке пар галактик Пайджа [36] есть кратные системы типа трапеции, котор ые рассматриваются как несколько пар. В табл. 2 включены только изолированные пары. Для них вклад соседних галактик в потенциальную энергию пары составлял не более 30%. Критерий изолированности не выполнялся только в тех случаях, когда по лучевой скорости соседнюю галактику с уверенностью можно было отнести к переднему фону или когда между членами пары заметна перемычка. Для контроля возможного присутствия оптических пар предпринимался следу-

Таблица 2

ПАРЫ ГАЛАКТИК

Carl .							
NGC (α, δ)	$L \over L_{\odot} \cdot 10^{-10}$	$f f_{\odot}$	Тип	NGC (a, δ)	$\frac{L}{L_{\odot}} \cdot 10^{-10}$	$f f_{\odot}$	Тип
1	2	3	4	1	2	3	4
274 275	2.2	3.8	E	3226 3227	1.4	34	SE
382 383	4.8	- 14	E E	3395 3396	1,7	5.7	S
$\binom{0106}{-1536}^{1}$	11.5	36	E	3447 3447 A	0.05	24	S
545 ² 547	4.1	6.4	E	3454 3455	0.65	6.0	S
750 751	6.0	~0	E E	$\binom{1055}{+5702}^{1}$	13	500	E
871 877	7.6	139	S	3504 3512	2.1	1.3	S
1331 1332	2.5	16	E E	$\binom{1104}{+1842}^2$	3.0	18	E
1888 1889	0.8	~0	S E	$\binom{1107}{+2432}$	8.4	6.8	S
2276 2300	7.4	66	SE	3607 3608	1.3	108	E
2562 2563	5.1	53	SE	3769 Anon	0.24	1.9	S
2672 2673	4.0	43	E	3786 3788	3.0	70	SS
2693 2694	4.8	9.8	E	3799 3800	3.4	0.9	SS
2719 Anon	1.6	6.9	SS	3990 3998	1.2	92	E
2831 2832	6.3	381	E	4038 4039	3.3	~0	SS
2872 2875	2.8	196	ES	$\binom{1203}{+3121}^2$	6.1	6.4	ES
2985 3027	2.8	159	S	4105 4106	3.5	12	E.
3031 3034	0.95	232	S	$\binom{1213}{+2852}^2$	2.9	1.0	ES
$\binom{0943}{+0317}$	4.7	4.5	SS	4294 4299	0.57	175	SS
$\binom{0955}{+2906}^2$	2.1	18	E	4382 - 4394	5.2	~0	ES
3065 3066	2-0	7.5	ES	4485 4490	2.2	12	SS
3166 3169	2.9	10-3	SS	3481° Anon	2.1	81	E

^{1 —} Пары в удаленных скоплениях галактик [7].

Таблица 2 (продолжение)

	. 10 150					1 .	-
1	2	3	4	1	2	3	4
4527 4536	4.3	109	SS	5774 5775	1.7	2.4	SS
4567 4568	1.7	5.3	SS	5846 Anon	3.9	36	E
4631 4656	2.9	42	SS	5857 5859	5.6	1.5	S
4647 4649	5.5	9.6	SE	5898 5903	4.6	91	E
4676a ³ 4676b	4.4	3.6	E	$\binom{1520}{+2754}^{1}$	8.0	25	E
4754 4762	2.8	523	E S	5929 5930	1.3	12	SE
4782 4783	7.8	50	E E	5953 5954	1.8	0.5	ES
4809 4810	0.46	1.8	S	5982 5985	7.8	133	ES
4819 4821	5.9	58	S E	6068 Anon	4.9	2.9	SS
4926 Anon	4.3	443	E E	1181°a³ 1181°b	4.0	60	E
5005 5033	3.8	25	S	(+3942) ⁴	2.9	11	E
5194 5195	4.6	2.8	S E	$\binom{1718}{+4907}^2$	4.8	9.0	SE
5257 5258	. 17	6.1	S S	6658 6661	7.9	19	E
5278 5279	7.8	0.35	S S	$\binom{1955}{+4017}$	3.5	26	E
$\binom{1345}{+3407}$	4.2	133	S S	6962 6964	7.4	43	SE
5363 5364	3.1	110	E S	7236 ⁵ 7237	4.1	~0	E
5426 5527	5.0	3.8	S S	7318a 7318b	5.1	151	S
5473 5485	3.1	0.4	E	7320 7331	5.0	7.4	SS
5480 5481	3.4	59	S E	7576 7585	4.8	217	ES
5506 5507	1.1	227	S E	7714 7715	2.6	1.1	SS
5544 5545	1.6	~0	E E	$\begin{pmatrix} 2339 \\ -0354 \end{pmatrix}$	5.0	114	SS
5574 5576	1.7	3.0	E E	7752 7753	11.6	0.2	SS
$\binom{1448}{+2623}^{1}$	7.6	37	E	50 80			

 $^{^{2}}$, 3 , 5 — λ учевые скорости взяты, соответственно, из [38], [39] и [41].

^{4 —} Галактики № 14 и № 17 в скоплении Минковского [40].

ющий подсчет. Если бы пары в табл. 2 были оптическими, то их компоненты с большими лучевыми скоростями отличались бы в среднем по звездной величине на $+0^m18$ от компонентов с меньшими скоростями. Однако вычисленная разность величин составляет -0^m11 с погрешностью $\pm 0^m15$ из-за дисперсии Δm у компонентов. Этот результат показывает, что примесь оптических пар в действительности невелика.

Результаты определения суммарных светимостей и отношений массы к светимости для 87 пар галактик представлены в табл. 2. В первом столбце указаны номера галактик пар по каталогу NGC; в скобках даны координаты центров пар. Во втором столбце приведены суммарные светимости пар, а в третьем — вириальные отношения массы к светимости. Последний столбец дает типы галактик.

Отношения f вычислялись при факторе проекции, соответствующем случайному характеру движений в парах. Можно было определять среднюю величину f методом Пэйджа [36] по распределению ρ_{12} и Δv , у пар галактик. Но удобнее вычислять индивидуальные эначения, чтобы потом группировать пары по представляющим интерес приэнакам.

Среднее отношение массы к светимости для совокупности пар равно $(62\pm8)\,f_\odot$, средняя светимость пары — $(4.2\pm0.4)\,\,10^{10}\,L_\odot$. Пары галактик с E и S0 компонентами имеют $f_{\rm E}=72\,f_\odot$, пары со спиральным населением (S и Irr) — $f_{\rm S}=43\,f_\odot$, а смешанные — $f_{\rm E+S}=77\,f_\odot$. Обращает на себя внимание отсутствие большого различия между значениями $f_{\rm E}$ и $f_{\rm S}$, которое получилось у Пэйджа и Ван ден Берга [37]. Причина этого расхождения неясна. Возможно, что здесь играет роль эффект случайной выборки, так как для 18 приводимых в [37] пар $f_{\rm E}$, $f_{\rm E+S}$ и $f_{\rm S}$ близки к значениям Ван дан Берга. Интересно отметить, что отношение вириальной массы к светимости пары в среднем зависит от ее местонахождения; 22 пары, входящие в скопления галактик, имеют $f=97\,f_\odot$, 17 пар в группах — $52\,f_\odot$, а 48 пар между скоплениями и группами — $49\,f_\odot$. Поскольку во всех трех случаях влияние соседних галактик по критерию изолированности невелико, то причина различия должна быть иная.

Распределение пар галактик по величинам отношений f и характер корреляции ρ_{12} с Δv , теоретически позволяют судить о преимущественных движениях в парах. К сожалению, дисперсия наблюдаемых в еличин настолько велика, что эти тонкие эффекты совершенно затушевываются.

5. Тройные системы галактик. Данные об одиннадцати тройных система + галактик приведены в табл. 3. Среднее отношение вириаль-

ной массы к светимости у триплетов равно $(85\pm28)f_{\odot}$; средняя суммарная светимость — $(4.9\pm0.9)\cdot10^{10}\,L_{\odot}$. Критерий изолированности был выбран таким же, как и для пар. В нескольких тройных системах две галактики значительно ярче третьей, и их можно рассматривать как пару галактик. В этом проявляется неизбежная неточность классифи-

Таблица З ТРОЙНЫЕ СИСТЕМЫ ГАЛАКТИК

NGC (2, 8)	$L \over L_{\odot} \cdot 10^{-10}$	$f f_{\odot}$	Тип
3379—84—89	2.4	156	E
(1108+2902)1	7.4	20	E
3605—07—08	1.3	190	E
3623-27-28	3.9	22	S
36818486	2.0	352	S
(1144-0334)1	5.4	82	S
3991—94—95	3.9	26	S
4270—73—81	4.1	88	E
4478-86-Anon	6.6	18	E
(1648+4535)1	5.7	1.0	E
7769—70—71	11.4	1.6	S

Обозначения те же, что и в таба. 2.

кации систем галактик. Заметим, что у пяти триплетов, расположенных в группах и скоплениях, среднее f немного больше, чем у шести остальных (91 f_{\odot} и 81 f_{\odot}).

6. Группы залактик. Отношение массы к светимости определялось только для тех групп, у членов которых известно не менее трех лучевых скоростей. Критерий изолированности был несколько усилен: требовалось, чтобы соседние с группой галактики вносили вклад в потенциальную внергию группы меньше 20° . С целью выяснения возможного влияния галактик фона была определена средняя разность звездных величин для галактик с наибольшей и наименьшей лучевой скоростью. По 29 приведенным в табл. 4 группам средняя разность равна $+0^{\circ}$ 07, тогда как ожидаемое значение при проектировании галактик фона составляет $+0^{\circ}$ 61 \pm 0°20. Отсюда можно заключить, что влияние вффекта фона незначительно.

^{1 —} Вычислено по данным [38].

ГРУППЫ ГАЛАКТИК

NGC	$\frac{L}{L_{\odot}} \cdot 10^{-10}$	$f f_{\odot}$	Тип
68-69-71-72, Anon	10.2	190	E
125-127-128, Anon	11.3	410	E
375-79-80-82-83-84-85-86-88	16.2	188	E
584—596—636	8.6	50	E
736—50—51	14.0	412	E+S
1068—73—87	21.0	708	S
1441—49—51—53	6.5	116	E
$2444 \ a - c - d - e - f - g^{1}$	2.1	32	E+S
2655—2715—2748	8.5	202	S
2805—14—20, 2458*	3.3	84	S
09 ^h 36 ^m —04°37′ (VV—116) ¹	6.9	22	E+S
2976—3031—34—77	1.1	290	S
3151-58-59-61-63	24.8	236	E
3177—85—90—93	2.4	26	S
3338-46-51-68-77-79-84-89-3412	7.1	466	E+S
3395-96-3413-24-30, 2604*	4.2	12	S
3610-13-19-42	8.5	440	E
4245—74—78—83—4314	2.4	200	E+S
4260-61-70-73-81	8.6	290	E+S
4374-87-4406-35-38-58-61-73-77-792	14	1500	E
4464-67-72-922	9.3	162	E
4621-38-47-49-603	9.8	187	E
5426-27-68-93	9.5	332	S
54733	31	1534	E+S
$5806 - 13 - 31 - 38 - 46_a - 46_b - 50$	13.2	996	E
6166 A-B-C4	13	168	E
6927-28-30, Anon	6.2	144	E+S
6962-63-64, Anon	11.1	80	E+S
7317—18 _a —18 _b —19	9.3	132	E+S

Обозначения те же, что и в таба. 2. В последнем столбце указан преобладаю-

^{1, 4 —} Вычислено по данным, соответственно, [42] и [40].

 $^{^2-}$ Оценки f, сделанные в [5], вычислены с неверным значением фактора проекции и с ρ — средним, а не гармоническим средним. В данной таблице приведены исправленные значения.

^{3 —} Чрезвычайно рассеянная группа, рассмотренная нами в [43].

Суммарная светимость группы определялась не только по галактикам с известными лучевыми скоростями, но и по тем, которые можно было причислить к данной группе на основании их яркости и положения.

Из данных табл. 4 следует, что среднее отношение вириальной массы к светимости у групп равно $(331\pm96)\,f_\odot$, а средняя суммарная светимость — $(10.5\pm1.2)\cdot10^{10}\,I_\odot$. Группы с преобладающим вллиптическим населением (E:S>2) имеют в среднем $f_E=388\,f_\odot$, группы со смешанным населением — $330\,f_\odot$, а группы, где преобладают спирали (S:E>2), — только $236\,f_\odot$. Как и в случае пар, для групп галактик обнаруживается зависимость отношения массы к светимости от положения относительно системы более высокого порядка. У групп, на ходящихся в скоплениях, $\bar{f}=443\,f_\odot$, у прочих — $302\,f_\odot$.

7. Скопления залактик. В литературе известны оценки отношения вириальной массы к светимости всего для б скоплений галактик. Нами вычислены f еще для 9 скоплений. Результаты представлены в табл. 5. В первом столбце даны названия скоплений или координаты

Таблица 5 СКОПЛЕНИЯ ГАЛАКТИК

a, ō	$L L_{\odot}$	$f f_{\odot}$	Ten	n	Литер
01 ^h 20 ^m +33°00′	4-2-1011	258	E+S	3	
01230138	3.9.1011	300	E	41	[38]
0316+4120	1.0.1012	461	E	7	
0818+2114	2.4.1011	1156	E+S	5	
Ursa Majoris	7-1-1011	623	S	56	1 ×
1145+5559	7-0-1011	246	E+S	4	1 30
Canes Venatici	1.5.1011	300	S	17	[37]
Virgo	1.2.1012	668	E+S	90	[5]
Virgo Southen	3-2-1011	344	S	12	
1257+2814	4.9.1012	1020	E	50	[4]
1520 +- 2754	5-3-1012	1580	E	8	
1603+1755	1-8-1012	556	S	15	[44]
1627 + 3938	2.0.1012	755	E	22	[44]
2308+0720	8-5-1011	598	E	3	
2318+0755	2.0.1011	182	E+S	5	Q.
Сверхскопление	The same			-	
Hercules	1.5.1013	1270	E+S	6	[44]

их центров. Во втором и третьем — интегральные светимости и вириальные отношения массы к светимости. В четвертом столбце указан преобладающий тип населения. Индекс n означает число членов в скоплении с известными лучевыми скоростями. В последнем столбце содержится ссылка на литературу, в которой определялось f.

Интегральные светимости у далеких скоплений определялись по прокалиброванной зависимости между звездными величинами и угловыми диаметрами галактик на картах Паломарского атласа. Сравнение полученных таким способом интегральных светимостей Сота и Virgo с данными других авторов говорит о достаточно хорошем согласии оценок. Интервал звездных величин, в котором определены светимости членов скоплений, составлял в среднем $4^m \pm 1^m$ от ярчайшего члена скопления. Пример скопления Virgo [5] показывает, что изменение интервала подсчетов на 1^m 7 увеличивает вириальную массу и интегральную светимость таким образом, что их отношение остается практически постоянным.

Ввиду сильной зависимости f от светимости скопления имело смысл при вычислении средних значений f разбить скопления на две группы. К первой относились скопления с $L < 10^{12} \, L_{\odot}$. У девяти таких скоплений $\overline{f} = (446 \pm 102) \, f_{\odot}$ и $\overline{L} = (4.3 \pm 0.8) \cdot 10^{11} \, L_{\odot}$. Для шести богатых скоплений $\overline{f} = (841 \pm 168) \, f_{\odot}$ и $\overline{L} = (2.7 \pm 0.8) \cdot 10^{12} \, L_{\odot}$. При классификации системы галактик как небольшого скопления или как богатой группы были привлечены соображения удобства расчета потенциальной энергии; в тех случаях, когда проще сделать подсчеты галактик в параллельных полосах, нежели измерять взаимные расстояния между галактиками, система (например Pegasus) классифицировалась как бедное скопление.

Подобно парам и группам галактик скопления показывают зависимость среднего отношения массы к светимости от типа населения. В скоплениях с преобладающим эллиптическим населением $f_{\rm E}=786\,f_{\odot}$, со смешанным населением — $f_{\rm E+S}=502\,f_{\odot}$, а со спиральным — $f_{\rm S}=456\,f_{\odot}^{\bullet}$.

^{*} Пары, группы и скопления галактик обнаруживают любопытное постоянство среднего отношения $f_{\rm E}/f_{\rm S}$. Для пар $f_{\rm E}/f_{\rm S}=1.68$, для групп — 1.65 и для скоплений — 1.72. Заметим, что значения $f_{\rm E}/f_{\rm S}$ у пар по Пэйджу и Ван ден Бергу сильно отличаются от приведенных. Примечательно и другое совпадение. Среднее отношение f для индивидуальных галактик, входящих в группы и скопления, к f остальных равно 1.52, для пар это отношение — 1.53, а для групп, входящих и не входящих в скопления, — 1.48.

В табл. 5 включено одно сверхскопление галактик. Вириальная масса его вычислялась по дисперсии лучевых скоростей скоплений относительно средней для всей сверхсистемы. Было бы желательно измерить лучевые скорости и определить отношение f для других сверхскоплений.

8. Отношение вириальной массы к светимости для Метагалактики. Применение теоремы вириала к заведомо нестационарной системе носит формальный характер. В случае пар, групп и скоплений галактик мы заранее не знаем стационарны или нет эти системы. Сама
операция применения теоремы вириала позволяет выяснить справедливость исходной предпосылки. Из очевидного равенства

$$2T/|U| = f_{\rm B}/f_{\rm H}, \tag{6}$$

где $f_{\rm H}$ — нормальное отношение массы к светимости у галактик системы (определенное по внутренним движениям в них), а $f_{\rm B}$ — вириальное отношение, на основании вычисленной правой части можно судить о степени нестационарности системы или величине кинетического избытка в ней. Помня такую возможность, определим вириальное отношение массы к светимости для Метагалактики.

Мысленно вырежем в макрооднородном ввилидовом пространстве сферу радиуса r_0 . Потенциальная внергия ее равна

$$U = -\frac{3}{5} \gamma \frac{\mathfrak{M}^2}{r_0},\tag{7}$$

где \mathfrak{M} — суммарная масса галактик, расположенных внутри сферы. При линейной зависимости между скоростью и расстоянием галактик v=hr удвоенная кинетическая энергия галактик в том же объеме равна

$$2T = \mathfrak{M} \frac{\int_{0}^{r_{0}} v^{2}(r) r^{2} dr}{\int_{0}^{r_{0}} r^{2} dr} = \frac{3}{5} \mathfrak{M} h^{2} r_{0}^{2}.$$
 (8)

Подставляя (7), (8) в теорему вириала, для суммарной вириальной массы галактик получаем выражение

$$\mathfrak{M} = \gamma^{-1} h^2 r_0^3. \tag{9}$$

Обозначим светимость единицы объема Метагалактики через \overline{nL} , тогда отношение вириальной массы к светимости для Метагалактики записывается в виде

$$f_{\rm mr} = 3h^2/4\,\pi\gamma\,\overline{nL}.\tag{10}$$

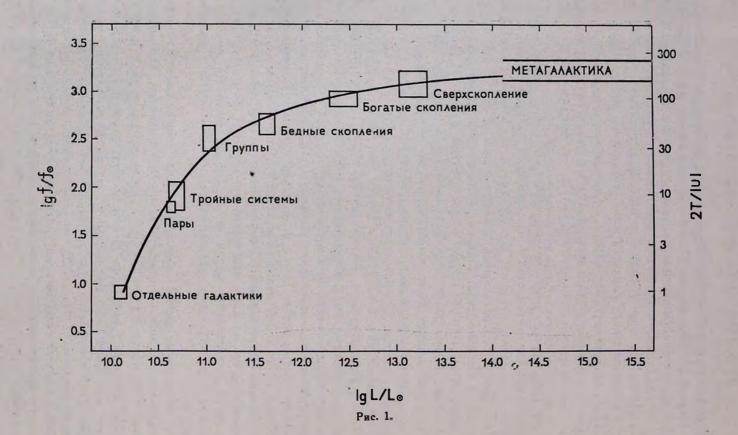
Как и следовало ожидать, $f_{\rm MF}$ не зависит от размеров вырезаемой сферы и является определенной динамической характеристикой Метагалактики. Воспользовавшись космологическим понятием критической плотности $\rho_{\rm K}=3\,h^2/8\pi\gamma$, (10) можно выразить как

$$f_{\rm MF} = \frac{2\,\rho_{\rm K}}{\varrho} f_{\rm H},\tag{11}$$

где р — наблюдаемая плотность вещества в Метагалактике. Влиянием дисперсии лучевых скоростей относительно хаббловского закона и неоднородностью распределения галактик при достаточно больших объемах можно пренебречь (тем более, что эти эффекты входят в теорему вириала с разными знаками).

Для вычисления $f_{\rm MF}$ требуется знать среднюю светимость единичного объема Метагалактики nL. Однако из наблюдений эта величина непосредственно не определяется. Наблюдения позволяют вычислить следующие величины. Статистическая зависимость между звездными величинами и лучевыми скоростями галактик фона $m_{\rm th} = 5 \log v - 4^{\rm m}24$ [7] дает среднюю абсолютную величину галактик $\overline{M} = -19^{\rm m}87$. Соответствующая ей светимость средней галактики \overline{L} равна $1.24\cdot 10^{\rm m} L_{\odot}$. Если принять, что у всех галактик $M = \overline{M}$, то подсчеты галактик до разных звездных величин или угловых диаметров позволяют определить число таких галактик в единице объема n_0 . Из подсчетов [45] получается $n_0 = 1.95\cdot 10^{-2}$ галактик мпс³. Отношение искомой величины $n\overline{L}$ к произведению находимых из наблюдений n_0 L не сильно отличается от единицы. По определению n_0 и L, оно равно

$$F = \frac{\overline{nL}}{n_0 \widehat{L}} = \frac{\int_{-\infty}^{\infty} 10^{-0.4.M} \, \varphi(M) \, dM}{10^{0.2} \int_{-\infty}^{\infty} M_{\varphi}(M) \, dM}, \qquad (12)$$


где $\phi(M)$ — функция светимости галактик.

Из-за неточностей подсчетов и возможной погрешности $\Delta m = \pm 0^{m}$ 3 ошибка в оценке произведения $n_0 L$ не превышает $\pm 25^{0}/_{0}$. Большая неопределенность кроется в значении F. Чтобы определить F, нужно задаться [какой-то функцией светимости галактик. Расчет, основывающийся на дисперсии точек относительно зависимости $m_{\phi}(v)$]7], дает F = 0.604. При $\phi(M) = \text{const} \cdot 10^{s(M-M_{\text{max}})}$ в (12) получаются

расходящиеся интегралы. Если ограничиться интервалом в пять звездных величин от M_{\max} то для s=0.2 (функция светимости Цвикки) F=0.534, для s=0.78 (начальный участок функции светимости Сота [46]) F=1.17, для s=0.6 (когда $\varphi(M)$ выглядит как подсчеты галактик в однородном фоне N(m)) F=0.915. Будем считать, что F заключено в пределах между единицей и 0.6, тогда значение f_{\min} будет находиться в интервале (1290 \div 2140) f_{\odot} . По-видимому это реальная точность, с которой известны отношения f_{\min} и 2T/|U| для Метагалактики.

9. Обсиждение результатов. Выводы. Рис. 1 воспроизводит средние значения светимостей и отношений вириальной массы к светимости (с соответствующими дисперсиями) для различных систем галактик. Двумя горизонтальными прямыми отмечена вероятная полоса значений f Метагалактики. Принято, что области диаметром более 100 мпс $(L \gg 1.1 \cdot 10^{14} L_{\odot})$ уже в достаточной степени однородны. Анализ рис. 1 позволяет сделать следующие заключения. Если бы все системы галактик были стационарны, то они располагались бы вдоль горизонтальной прямой, проходящей через среднее значение fотдельных галактик. В действительности существует монотонное увеличение отношения f с ростом светимости (или населенности) системы. Следовательно у всех систем галактик 2T/|U| > 1, и степень нестационарности в среднем увеличивается со светимостью системы. Плавная кривая, которую можно провести через все усредненные значения f, непрерывно переходит в значение f для Метагалактики. В этом мы видим подтверждение мысли В. А. Амбарцумяна [47], что имеется некоторая связь между явлением нестационарности систем галактик и расширением Метагалактики. Обратившись к данным табл. 2-5, можно заметить, что ни одно индивидуальное значение f у пар, триплетов, групп и скоплений галактик не превышает среднего значения fМетагалактики; последнее является как бы потолком оценок f у систем галактик.

Представляет интерес выяснить, какой процент систем галактик: удовлетворяет условию стационарности. Будем считать, что стационарные системы имеют $0 < f < 10 \, f_\odot$. Среди пар галактик в втом интервале значений f находится 38 систем. Статистический расчет показывает, что около 10 из них попали в интервал из-за соответствующей ориентации относительно луча зрения. Таким образом, стационарные пары составляют не более $32^{\circ}/_{\circ}$ от общего числа. У тройных систем галактик процент стационарных всего $18^{\circ}/_{\circ}$, среди групп $- < 3^{\circ}/_{\circ}$, а среди скоплений галактик, по-видимому, вообще нет стационарных образований.

В заключение остановимся на возможности объяснения больших значений f с точки зрения присутствия в системах галактик скрытой материи. Нетрудно убедиться, что однородный метагалактический фон невидимого вещества, часто допускаемый из космологических соображений, при любой плотности не может обеспечить стационарность и пар и скоплений галактик. Требуется предполагать, что плотность скрытого вещества возрастает при переходе от скоплений к группам и парам галактик (грубо говоря, пропорционально плотности видимого вещества в степени $^{3}/_{4}$). Но для пар галактик вта плотность должна быть столь велика, что масса темного вещества в объеме средней галактики превышала бы собственную массу звездного вещества в ней. Более того, значительная дисперсия отношений f у систем галактик приводила бы к очень запутанной картине распределения скрытого вещества.

В этой связи уместно сослаться на пример известной группы галактик, в которую входят М 81 и М 82. Расхождение между вириальным и нормальным отношением массы к светимости носит здесь конкретный характер. Вириальное отношение f у группы равно 290 f_{\odot} . Основная доля светимости группы приходится на М 81 и М 82. Рассматривая их как пару, получаем $f=232\,f_{\odot}$. Но для М 81 и М 82 индивидуальные оценки f составляют всего 20 f_{\odot} и 7.4 f_{\odot} . Чтобы обеспечить стационарность системы, невидимому веществу пришлось бы приписать плотность порядка 10^{-23} г см $^{-3}$. Тогда невидимое вещество намного увеличивало бы индивидуальные значения f у М 81 и М 82, что в действительности не наблюдается. С другой стороны, недавно обнаруженные вэрывные процессы в ядре М 82 хорошо гармонируют с общими представлениями о нестационарности систем галактик.

Автор глубоко признателен акад. В. А. Амбарцумяну за обсуждение результатов работы.

Бюраканская астрофизическая обсерватория

THE VIRIAL MASS-LUMINOSITY RATIO AND THE INSTABILITY OF THE DIFFERENT SYSTEMS OF GALAXIES

I. D. KARACHENTSEV

The virial mass-luminosity ratio f for 87 pairs, 11 triplets, 29 groups and 15 clusters of galaxies are determined.

A conclusion is made to average the increase of a degree of the systems of instability with their luminosity increase.

The virial mass-luminosity ratio for Metagalaxy is calculated.

An indication is obtained about the community of instability phenomena of the systems of galaxies and the expansion of Metagalaxy.

ЛИТЕРАТУРА

- 1. В. А. Амбарцумян, Изв. АН АрмССР, сер. физ.-мат., 11, 9, 1958.
- Proceedings of the conference on instability of systems of galaxies, A. J., 66, 10, 1961.
- 3. G. de Vaucouleurs, Ap. J., 131, 585, 1960.
- 4. И. Д. Караченцев, Изв. АН АрмССР, сер. физ.-мат., 17, 103, 1964.
- И. Д. Караченцев, Астрофизика, 1, 303, 1965.
- 6. D. N. Limber, W. G. Mathews, Ap. J., 132, 286, 1960.
- 7. M. L. Humason, N. U. Mayall, A. R. Sandage, A. J., 61, 97, 1956.
- 8. N. U. Mayall, A. de Vaucouleurs, A. J., 67, 363, 1962.
- 9. Б. А. Воронцов-Вельяминов, А. А. Красногорская, Морфологический каталог галактик, І, МГУ, 1962. Б. А. Воронцов-Вельяминов, В. П. Архипова, ІІ, МГУ, 1964. Б. А. Воронцов-Вельяминов, В. П. Архипова, ІІІ, МГУ, 1963.
- 10. А. С. Шаров, Астрон. ж., 40, 900, 1963.
- 11. Th. Page, Ap. J., 116, 63, 1952.
- 12. В. А. Амбарцумян, Изв. АН АрмССР, сер. физ.-мат., 9, 23, 1956.
- 13. Transactions I.A.U., XIB, 207, 1961, Academic press, London and New York-
- E. M. Burbidge, G. R. Burbidge, R. A. Fish, Ap. J., 133, 393, 1961; 133, 1092, 1961.
- 15. E. M. Burbidge, G. R. Burbidge, K. H. Prendergast, Ap. J., 126, 339, 1962.
- 16. G. de Vaucouleurs, J. Page, Ap. J., 136, 107, 1962.
- 17. E. M. Burbidge, G. R. Burbidge, K. H. Prendergast, Ap. J., 142, 154, 1965.
- 18. E. M. Burbidge, G. R. Burbidge, K. H. Prendergast, Ap. J., 130, 26, 1959.
- 19. E. M. Burbidge, G. R. Burbidge, K. H. Prendergast, Ap. J., 137, 376, 1963.
- 20. V. C. Rubin, E. M. Burbidge, G. R. Burbidge, Ap. J., 140, 80, 1964.
- Problems of extra-galactic research, I. A. U. symp. № 15, The MacMillan company, New York, 1962, 103.
- 22. A. Poveda, Ap. J., 134, 910, 1961.
- 23. R. H. Miller, K. H. Prendergast, Ap. J., 136, 713, 1962.
- E. M. Burbidge, G. R. Burbidge, D. J. Crampin, V. C. Rubin, K. H. Prendergast, Ap. J., 139, 1058, 1964.
- 25. E. M. Burbidge, G. R. Burbidge, K. H. Prendergast, Ap. J., 138, 375, 1963.
- 26. R. A. Fish, Ap. J., 139, 284, 1964.
- 27. G. de Vaucouleurs, A. de Vaucouleurs, Ap. J., 137, 363, 1963.
- 28. E. M. Burbidge, G. R. Burbidge, Ap. J., 133, 726, 1961.
- V. C. Rubin, E. M. Burbidge, G. R. Burbidge, K. H. Prendergast, Ap. J., 141, 835, 1965.
- 30. E. M. Burbidge, G. R. Burbidge, Ap. J., 129, 271, 1959...
- V. C. Rubin, E. M. Burbidge, G. R. Burbidge, D. J. Crampin, Ap. J., 141, 759, 1965.
- 32. E. M. Burbidge, G. R. Burbidge, K. H. Prendergast, Ap. J., 137, 1022, 1963.
- 33. E. M. Burbidge, G. R. Burbidge, K. H. Prendergast, Ap. J., 132, 654, 1960.

- 34. G. de Vaucouleurs, Problems of extragalactic research, I. A. U. symposium № 15, The MacMillan company, New York, 1962, 15.
- 35. A. R. Sandage, Ap. J., 133, 355, 1961.
- 36. Th. Page, Ap. J., 132, 910, 1960.
- 37. S. van den Bergh, A. J., 66, 566, 1961.
- 38. F. Zwicky, M. L. Humason, Ap. J., 132, 627, 1960; 133, 794, 1961; 139, 269, 1964.
- 39. E. M. Burbidge, G. R. Burbidge, Ap. J., 133, 726, 1961; 130, 629, 1959.
- 40. R. Minkowski, A. J., 66, 558, 1961.
- 41. J. L. Greenstein, Ap. J., 135, 679, 1962.
- 42. E. M. Burbidge, G. R. Burbidge, Ap. J., 130, 12, 1959; 134, 248, 1961.
- 43. И. Д. Караченцев, ДАН АрмССР (в печати).
- 44. И. Д. Караченцев, Изв. АН АрмССР, сер. физ.-мат., 17, 109, 1964.
- 45. И. Д. Караченцев, ДАН СССР, 158, 815, 1964.
- G. O. Abell, Problems of extragalactic research, I. A. U. symp. No 15, The Mac-Millan company, New York, 1962, 213.
- 47. В. А. Амбарцумян, Вопросы космогонии, 8, М., 1962, 3.