Из более ранних наших исследований известно, что очищенные превараты Asp. niger R-3 [5] содержит два белка, обладающие D-AAOA, которые отличаются по субстратной специфичности, как изоферменты, что и доказывается полученными данными

Таким образом, неходя на вышеуказанного, можно заключито, что клетки Asp. niger R-3 содержат целый набор структурно родственных пероксисом (известных в литературе как молодые и арелые) [1—3], вмеющих обисих предков, но акполняющих разные функции. Таким образом, бногенез пероксисом Asp. niger R-3 как специфических цитоплазматических частид записит от их функциональной активности и происходит так, что, с одной стороны, при метаболизме клетки образуются пероксисомы, обладающие оксидазой D-Алл, которая имеет важное значение при глюконеогенезе, с другой стороны, пероксисомы, обладающие оксидазой D-Мет, участвующей в метаболизме метионина

JUHUPATVPA

- 1 Белицер И Б Успехи совр. биолютия, 84-2 (5) 189-206, 1972
- Мейсель И., Козлова Т. И. и пр. Мопробиол., XII, 5, 835—845, 1977.
- 3. Medicess M. H. a. a. M. Kpobigon, XIII, 6, 1039-1036, 1978.
- 1 Опария A И и фр. Функциональная био спаня клиточных структур, М., 1970.
- J. Obrocom 7, 7, 7, 200 A. P. Toursen Street Apmenio, 41, 5, 402-407, 1988.
- 6. Оганисян С. П., Дания И. А., Хандага Я. Биохимии, 55, 12, 530—536, 1990.
- 7 Эвонелем С. П., (ин эм. Ч. А. Барами А. Г. Пристад. биох и микробиод. (в печота), 199 г.
- в Огануски С. И., Давтин М. А., Навликови Д. Питология (в печати).
- 9. Baadhain P. et al Mischem. J., 92, 179-184, 1984.
- 10. Barret A. J. L. Dings. orth. Holland, 4d 1 5, 1972
- 11. D. Dave Ch. Harrey Securs Ser 50, 49-57, 49-57, 1965,
- 12 Kearnev & P., Singer Th. D. J. Biol. Com. 119 2 p. 105 201 10 to
- 13. Krishnakantha et al. Brothem 4, 130, 167-175, 1972,
- 14. Lowery et at. J. Biol. chem. 193, 265-275, 1 51.

Hogrymulo 3 1 1907 r.

Бявлог, жури, Арменци, Х. 2 (45), 1992

V/1K 635 64:575 127 2

ПРОЯВЛЕНИЕ САМОФЕРТИЛЬНОСТИ В F₂ И F₂ ГИБРИДОВ LYCOPERSICON ESCULENTUM MILL. > L. MIRSUTUM F. CLABRATUM — И MULL.

A M ALA, CKAHRU E M FIABACAPARH

Ниститут демледелья МСХ республью Армения, Эчмыйдзен

Показано существенное разнообрание растении по урорию слекота местимости и F_0 гибрилов от сърсиналини высоколимосоиместимосо урорию томата F_0 самофергилиности F_0 гамофергилиных растений и F_1 находится в прямой инвенмости от уровня самосовместимости исходимх растений F_2 .

Мехендрине спериов — самофертильность — имоствримовость — межен ченного полиимодействие. В комплексе цикого самонесовместимого (S1) вида L. hirsutum имеется самофертильная (SF) разновидность glabratum, которая, полобно основной форме, успешно окрещивается с типичными самосовместимыми (SC) видами только при использовании последних в качестве материнских компонентов [2, 5, 6, 11]. Исследованиями устявовлено [9], что гибриды первого поколения от скрещивания культурного очала I evalent m (S1) в I, birsuture I, glabratum по уровню самосовместимости значительно предосходят glabratum, но уступают esculentum. Результаты скрешиваний указанных гибрилов с материнской формой и другими самосовместимыми видами томата показали, что ингибирующее действие аплелей самофертильности S_I против S_I-пыльцевых трубок самосовместимых вилов у растений F_I значительно ослабляется [1, 9]

В настоящем сообщении представлены результаты изучения проявления самофертильности в двух последующих поколениях сибрилов I esculentum — h hirsatum f glabratum,

Репельтоты и обсуждение Ранее нами было ноказано, что гнбрилы от екрещивания различных сортов культурного томата с образном пр. 7924 L. airsutum f. представляют собой жизнеспособиме растения, превосходящие родительские формы как по астегативной мощности, так и по количеству образующихся плодов [2, 10]. Как правило, все растения F₁ проявляют розковое самосовместимости и при обычном, и (тем более) при искусственном самооныления. В рязе случаев отмечалась завязываемость илодов (правда, очень слабая) и при опылении ибридов пыльной материнского сорта [1, 9].

Во втором поколении гибрилов было изучено 25 растений из семии от обычного самоопыления и 22 растения—от свободного опыления F: На самосовместимость и совместимость и пыльцой митеринского сорта проанализировано соответствению 23 и 18 растений Остальные шесть растений отличались слабой мощностью и отсутствием цветков, пригодиых для опыления в гибридизационный периол. Результаты изучения F₂, представленные в табл. 1, показывают широкое разнообразие среди растений по степени выраженности признака самофертильности. Все проанализированные растения F₂ по их реактии на некусственное симоопыление и опыление пыльцой культурного ломата (сорт. Массамофертильной культурного ломата (сорт. Массамофертильной культурного ломата (сорт. Массамофертимые с пыльцой материи первох группа—растения, хорошо совместимые с пыльцой материи

Таблиц. 1 X ди ди тила растений Midseason 424×линия 7924

Группа самосовм- стим 111	Количества рестепий	Олимение пывыной Midseason 427					N + () + L - 11			
		претьов Опилено	s masalloca magon, %	число семян ин		Condition	138412 0 -	to seminal to		ован! ни вокомп эннэтэву
				плод	line Di.	HETKOR	4	11 10 1	b K	
1	7	-85	42 4 ±8 3	25 2 1 5 3	11 7 h3 s	1:14	2 1:1-5	10 1155	6.4427	221 4 184 3
11	19	191	4.342,0	5,643.5	01.00	271	21	10 12 2	_ 6+U ~	177,0;±56 å
(11	15	117	n o 💆		((-1)	242	b		0,0	10 5 +5 9

екого сорта и пыльцой своего социетия. Эта группа иключает 6 расте ини в потометке от самоопыления и 1-от свободного опыления Е. Вторая группа-растения, несовместимые или слабо совместимые с культитеном, но отвосительно хорошо совместимые с пыльшой своего соцветия. К этой группе были отнессны 9 растений от самоопыления и 10 от свободного опыления Е. От опыления пиль рій материнского сорта лишь у 4 растений из 19 завязались едини инге слабоисемененные плоды. По результатам самоопыления в количеству свободного опыдания растения второй группы устудают свответствующим авказателям растений первой группы. Третья группа-растения, иссовместимые ни с выльцои жультигена, ин е собственной исльцой. В общет сложности таких растений было 15. На пести и чис в варианте 🛴 самоольшением (яскусственным), образовались едининые бессемянные илоды. Четыре растения этой группы не имели плодоз и при свободном опылении. Как видим, хотя в общем количество самосовместимых растений в потометве от самооны дена и своболного опыления примерно одинаково (65,2 и 61,1% соответственно), однако выход растений с высоким уроянем самосовместимости значительно выше в потометве от самоопылсяня.

Таким образом, появление во втором поколении группы высокосамосовместимых растений свидетельствует о том, что значительное ослабление в SrSe столбиках гибридов F1 ингибирующей функция S1-аллелей привело к возможности оплодотворения S2-пыльцевыми вернами. В результате этого вместо ожидаемых при независимом действии S-аллелей двух генотипоа (SrSe и SrSe) в F2 мы получаем три генотипа (SrSe SrSe и SrSe). По-видимому, генотии SrSe имею растении перпой, высокосамосовместимой, группы. Предлоложение по ствериклается и тем, что, как правило, растения этой группы отынчаются более выражениями признаками культигена, лучае илодопосят и имеют более окрашенияе и круппые плолы [3]. Воровтность выщевления SrSe-генотинов повышается в условиях ограни ечього опылетия, каковым и наших опытах является обычное самоопыление.

Третье похоление гибридов Midseason 427× лиция 7921 было представлено потометном Ру от самоонывения и свободного опывения трех растений 1 группы, трех растений И группы и свободиого онылении јех растевий 111 рувны сописствиости. Все семан Е нали пентилны на совместимость с собственног пынков чето чето на 🔀 ственного самоопыления. Опыление ныльцой материнского сорта проводилось на растениях 1 семей от самооныления и 2- от самбодного оныления Ед. В табл. 2 приведены результалы апализа Ед представленные угредненными данными по группам, выделенным (апалогичио F₂) в зависимости от реакции растений на опыление пильной культигена, дехусственное самоопыление и свободное опыление. В отдельную, четвертую, группу яключены полностью стерильные растения. Ках и в F2 основным кратерием для выявления растений с выгоким уровнем самосовместимости служила их положительная скрещиваемость с материнским сортом. По этому признаку было выделено 21 растение (из 56 проанализированных, 37,5%) в потомстве 116

Таблица 2. Характеристика растений F_3 Midseason 427×линия 7924 по самосовместимости, продуктивности и скрещиваемости с материнским сортом

BNOCOB-	HH FE	Опыление пыльцой Medsea- son			Сам кольжение				
Группа сам	чиско растений	опыясна	378938- 2006 111 204, %	на ј пас- семян чиско	овмзено поменую		число семян на 1 цяс- ток	Число семян на растение	
1 11 11: 11:	24 4 25 18	1P4 5 146 117	42_8+5 2 U U : 3+1 (2 6.2+1 5 0.0 0.0 0.0	2.6 59 300		0.5+0.2	2 18.6+4 4 2 60.5+14 5 28.6 ±7 7 0 0	

F2 первой группы совместимости и 3 (из 15 п) в потомстве растений второй группы. Однако в отлачие от Ед эти 24 растения сильно различались по реакции на искусственное самоопыление и свободное опыление Так, 4 растения при опылении собственной пыльцой завч зали плоды и семена (завязываемость плодов составила 53,9%) и паодоносили при свободном опылении (среднее число влодов на растение--38,8); 14 растений отрицательно реагировали на самооныление, но плодоносили при свободном опылении (20,8 влюдов на растение); 6 растений были бесплодны как при самоовылении, так и при свободном опылении При этом во всех трех случаях завязываемость и кохорыя оныковод внатитакум йодыкый винакыйо го водока составляла 31.8; 41.1 и 54.1% соответственно. Отрицательная реакшия на самоопыление объясияется лишь возможной стерильностью собственной пыльцы, а бесплодность растений при свободном онылении может быть либо с попаданием на рыльца цветков малого количества фертильной пыльцы с других растений, недостаточного для вавязывания плодов, либо со стерильностью попадаемой пыльцы. Полученные результаты подтверждают известные литературные данпые о большей жизнеспособности у межнидовых гибридон женской генеративной системы по сравнению имужекой [4, 7, 10]

Сравнение данных табл. 1 и 2 показывает, что по результатам самоопыления и количеству завязавшихся плодов все выделенные группы растений в — значительно уступают соответствующим группам Е.

Рассмотрим распределение растений F_1 по реакции на самооныление в зависимости от их происхождения (табл. 3). Представляльные данные показывают что F_2 от самооныления превосходит F_3 от
свободного опыления но количеству как самофертильных растений,
так и бесплодных. Наибольний процент самостерильных растений
(70,6) и наименьний—бесплодных при свободном цветении (17,5%)
отмечен и потомстве растений гретьей группы совместимости. Определенную роль и таком распределении, очевидно, сыграла реакции
растений на инбридиит. Как изпестно, отцовская форма гибридов
1. hirsutum f, glabratum—является перехрестноопылителем с инз-

Тоблица 3. Распределение растений F_3 Midsenson 127 \times линия 7924 по реакции на гамоопыление в зависимости от их происхождения

Группа		- W.	Не завизавших плоды от самоопываения						
самосовис- итромитр исколных	Всего растений F₃	HECRESE HELDER ZHILL LEGOMES TO RILLOR RILLOR							
растений F ₃			имодонисящих пр	бесплэдных при срободном о нывения					
Е ₂ от самоопыления Р ₂									
1	32 13	18.8 46.2	46.9 23.1	34.3 30.8					
		For the chor	болиого опыления Ра						
1 11 111	34 31 17	11.8 6.5 11.8	61.8 67.7 70.6	26.5 25.8 11.5					

ким уровнем самофертильности в резко отридательно реатируст на набридниг [8]. У сибридоз, несмотря на более высокий уровень самофертильности, перекрестноопыляемость в значительной степени сохраняется, в связи с чем самоопыление у них приводит к проявлению депрессии в потомстве, котя и не так сильно, как у дикой формы. При свободном опылении действует механизм избирательного оплодотворения, что способствует образованию относительно сбалансировачаюто потомства. Это мы и наблюдаем в потомстве 111 группы совмсстимости, которое, как уже указано, с F₁ отбиралось из семяи от свободного опыления.

Таким обраом, у гибридов между ку плурным томат м L. escalentum и деким L. hirsutum f. glabratum готерозиготное состояние по аллелям самосовместимости тнаов S_t и S_c приводит к вознихновению реакции межаллельного взаимодействия в локусе несовместимости, при которой ослабляется ингибирующее действие S_t-аллеля и столбике в отношении S_c-несущей пыльцы. При самоопылении таких гибридов выщенляются растения с высоким уровнем самосовместимости и признаками, приближающими их к типу культурного томата. В Г₃ количество самофертильных растений зависит от уровня самофертильности исходных растении Г₂. Растения F₂ с высоким уровнем самосовместимых особей, чем растения F₂ с инзким уровнем самофертильности. В то же время последовательное самоопыление в ряду поколений, в саязи с паралаельным усилением инбредной депроссии, пренятствует реализании тенетического потенциалы самосовместимых гибридов.

ЛИТЕРАТУРА

- I. Асаджанян А. М. Генетика, 16, 3, 493, 1980
- 2. Ага инян А. М. Биол, жури. Армении, 27, 12, 54, 1974.
- 3. Агаджинян А. М., Навасардян Е. М., Адамян К. С. Биолог журн Арменин. 42, 9—10, 949, 1989.
- 4 Брилс Ф., Ноулз П. Научные основы селекции растении. М., 1972

- 5. Геор шева Р. Род Lycopersicon Mill Биосистематическое и сенегическое исследование. София, 1976.
- 6 Жученко Л. Л. Генетика томатов, Кишипев, 1973.
- 7 Мунтину И. Г. 4-й съезд ВОГиС им. Н. И. Вакилова. Тез. цикл., 3. Кишпиев, 1982.
- 8 Нанасардян Е. М. Агаджанян А М. Биолог, журн. Армении, 31, 8, 862, 1978.
- 9. Навосардян Е. М., Агаджанян 4 М Биолог. жури. Армении. 33, 7, 698, 1980.
- 10. Навасправя Е. М., Агаджаная А. М. Биолог. жури, Армении, 34, 12, 1239, 1981.
- 11. Савов: И Генетика и сележают (НРБ), 14, 5, 338, 1981.
- 12. Leinx D., Crowe L. K. Heredity, 12, 2, 233, 1958.

Поступело 6.V1.1990

Биолог кури Аргении, № 2 (45), 1992

MIIK 664,33:664,34

ДИКОРАСТУЩИЕ ПИЩЕВЫЕ РАСТЕНИЯ СЕВАНСКОГО БАССЕЙНА

И С МЕЛКУМЯН

И (Согания АН Армения, Ереван

Приводятся сведения о 70 видох растений, употребляемых местным населением в иншу; для некоторых из нех дано применение о народной медициие Одновремению затрагиваются вопросы раци-пального жиложаювания и охраны

Растения пиществе медицина народная-высседи ол Севан

Настоящая статья является продолжением работ по инцевим растениям республики [3—6].

В работе обобщены сведения о применении в пищу дикорастуших растении данного региона. для некоторых из них приводятся также данные о применении в медицине. Понятно, что список может быть дополнен и изменен в холе дальнейних исследований.

em. Amaranthaceae

Amaranthus retroflexus 1. мадыв, дываные — Данный вид те вмеет инчего общего с общепринятим названяем дываные (Portulaca oleracea). Гдат и отворенити види, заправляют маслом, яйцами и чесноком.

Сем. Аріасеае

Angelica tatian в Вогах. — рыр - едят сырой очищенный стебель, в черешки маринувы

Anthriscus nemorosa (Riea.) Spreng. - при - черешки маринуют.

Bilacunaria micr..c.rps (Bieb.) M. Pimen. et N. Tichomirov — Hippomaratheum langilobum (DC.) B. Fedtsch.)— родир, Јици — молодые черешки солят.

Bunium bourgaei (Boiss.) Fregen et Sin' — 2m2mb — употребляют так же, как и Chaerophyllum hulbosum.