ՏԱՅԱՍՏԱՆԻ ՏԱՆՐԱՊԵՏՈԻԹՅԱՆ ԳԻՏՈԻԹՅՈԻՆՆԵՐԻ ԱՁԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Кијшиџпшնի քիմիшկшն հшնդես Химический журнал Армении 67, №4, 2014 Chemical Journal of Armenia

УДК 547.294.314.07

НОВЫЙ ПОДХОД К АСИММЕТРИЧЕСКОМУ СИНТЕЗУ ЭНАНТИОМЕРНО И ДИАСТЕРЕОИЗОМЕРНО ЧИСТЫХ β-ОКСИ-α-АМИНОКИСЛОТ

А.С. САГИЯН, ^А А. С. ПОГОСЯН, ^А С. А. ДАДАЯН, ^А А. С. ДАДАЯН, ^А В. И. ХРУСТАЛЕВ И Ю. Н. БЕЛОКОНЬ ^Б

^{*а*}НПЦ «Армбиотехнология» НАН Республики Армения Армения, 0056 Ереван, ул. Гюрджяна, 14 E-mail: slavik_dadayan@yahoo.com ^б Институт элементоорганических соединений им. А. Н. Несмеянова РАН Москва,119991, ул. Вавилова, 28

Поступило 21 VI 2014

Обнаружена новая реакция асимметрического синтеза энантиомерно обогащенных β-окси-α-аминокислот исходя из карбоновых кислот и комплекса Ni^{II}, образованных шиффовым основанием глицина и (*S*)-BPB [(*S*)-2-N-[N'-(бензилпролил)аминобензофенона]. Показано, что при добавлении к литиевому еноляту глицинового комплекса Ni^{II} гексабутилдистанана, перекиси третичного бутила и уксусной кислоты в ТГФ конверсия исходного комплекса превышает 90%, с образованием одного диастереоизомера-комплекса (*2S*,*3R*)-треонина.

Рис. 1, табл. 1, библ. ссылок 11.

Известно, что β-гидрокси-α-аминокислоты различной структуры являются важнейшими компонентами многих физиологически активных алифатических и циклических пептидов (ванкомицин, циклоспорин и др.) и ингибитров ферментов [1]. Они также являются удобными промежуточными соединениями в синтезе галоген-α-аминокислот, β-лактамов и других соединений [2,3]. Поэтому разработка методов синтеза этих аминокислот чрезвычайно важна.

К наиболее продуктивным методам синтеза β-окси-α-аминокислот относится диастереоселективная альдольная конденсация хирального Ni^{II}-комплекса основания Шиффа глицина с различными альдегидами [4-8]. Недавно нам удалось обнаружить новую реакцию асимметрического синтеза энантиомерно и диастереомерно чистых β-окси-α-амнокислот исходя из взаимодействия хирального Ni^{II}-комплекса основания Шиффа глицина и [(S)-2-N-[N'-(бензилпролил)аминобензофенона [(S)-BPB] с карбоновыми кислотами.

Обнаружено, что при добавлении гексабутилдистанана и перекиси третичного бутила к литиевому еноляту комплекса глицина с последующим добавлением раствора уксусной кислоты в тетрагидрофуране конверсия исходного комплекса составляет более 90%. При этом с высоким асимметрическим выходом (de > 98%) получается один диастереоизомер продукта конденсации — комплекс (2S, 3R)-треонина, строение которого подтверждалось данными ЯМР ¹Н и рентгеноструктурного анализа (схема и рис).

Иными словами, формально реакция протекает через превращение уксусной кислоты в альдегид, который и вступает в реакцию с глициновым фрагментом комплекса. Механизм процесса, по-видимому, включает промежуточное образование енолята олова и реакции окисления и восстановления, однако это требует дополнительного исследования. Тем самым открывается новый путь асимметрического синтеза целого класса важных аминокислот как белковой, так и небелковой природы.

Рис. Строение треонинового комплекса (2S,3R) по данным рентгенструктурнога анализа.

Абсолютная конфигурация α -утлеродного атома треониневого остатка конденсированного комплекса была установлена методом поляриметрических измерений в области 589 *нм* (Na-линия). Положительное значение оптического вращения синтезированного комплекса треонина свидетельствыет о его (2*S*)-конфигурации. Абсолютная конфигурация β углеродного атома треониневого остатка комплекса была установлена методом РСА. Полученные данные подверждают (2*S*, 3*R*)-конфигурацию основного диастереоизомера. Соотношение (*S*, *S*, *S*)- и (*S*, *S*, *R*)- диастереомеров было определено методом ЯМР ¹Н (до кристаллизации) посоотношению интегралов сигналов метиленовых протонов *N*-бензилпролинового остатка в интервале 2.55-4.40 м.д. Кроме этого, соотношение диастереомерных комплексов дополнительно определялось также методом хирального ГЖХ анализа смеси аминокислот, полученной путем кислотного разложения смеси диастереомерных комплексов и ионообменного выделения по стандартной методике [8].

Таким образом, в настоящей работе обнаружен новый подход к синтезу энантиомерно и диастереоизомерно чистых β-окси-α-аминокислот, который открывает альтернативный путь асимметрического синтеза целого класса важных аминокислот как белковой, так и небелковой природы.

Эмпирическая формула	C ₂₉ H ₂₉ N ₃ Ni O ₄
Молярная масса	542.26
Температура	120(2) K
Длина волны	0.71073 Å
Кристаллическая система	орторомбическая
Пространственная группа	P2 ₁ 2 ₁ 2 ₁
Размеры ячейки	$a = 9.8339(5) \text{ Å}, \alpha = 90^{\circ}.$
b = 10.2661(5) Å	$\beta = 90^{\circ}.$
c = 24.9252(12) Å	$\gamma = 90^{\circ}.$
Объем	2516.3(2) Å ³
Ζ	4
Плотность (вычисленная)	$1.431 Mg/m^3$
Коэффициент абсорбции	0.812 мм ⁻¹
F(000)	1136
Размеры кристалла	$0.30 \times 0.25 \times 0.05 \text{ mm}^3$
Тета-диапазон для сбора данных	1.63 to 32.58°.
Индекс цепи	$-14 \le h \le 14$, $-15 \le k \le 15$,
	-37<=1<=37
Совокупность отражений	39507
Независимые отражения	9164 [R(инт.) = 0.0614]
Полнота в тета = 32.58°	99.9 %
Коррекция абсорбции	Полуэмпирическая,
	полученная от эквивалентов
Максимальная и минимальная транс-	0.960 и 0.793
миссии	
Метод очистки	Полная матрица наименьших
	квадратов на F ²
Данные / удерживающие / параметры	9164 / 0 / 338
Конечные R показатели [для 7706 отра-	R1 = 0.0393, wR2 = 0.0800
жений с I>2σ(I)]	
Параметры абсолютной структуры	-0.004(8)

Основные кристаллографические данные и параметры уточнения (2S, 3R)-треонинового комплекса

Экспериментальная часть

Рентгеноструктурное исследование. Параметры элементарных ячеек и интенсивности отражений для (2S,3R)-треонина измерены на автоматических трехкружных дифрактометрах "Bruker SMART 1K CCD" (λМоКаизлучение, графитовый монохроматор, *q*- и w-сканирование) и "Bruker SMART APEX II CCD" (λМоКа-излучение, графитовый монохроматор, φи w-сканирования). Для полученных данных проведен учет поглощения рентгеновского излучения по программе SADABS [9,10]. Основные 408

кристаллоструктурные данные для (2S,3R)-треонина представлены в таблице. Структуры всех соединений определены прямым методом и уточнены полноматричным методом наименьших квадратов в анизотропном приближении для неводородных атомов. В работе использовались аминокислоты и другие реагенты фирмы "Aldrich" и "Реахим". Энантиомерную чистоту выделенного (2S,3R)-треонина определяли методом ВЭЖХ анализа с применением хиральной фазы типа "Diaspher-110-Chirasil-E-PA 6.0 *мкм*, 4.0×250 *мм*" [11].

Исходный комплекс Ni^{II}-(S)-BPB-Gly был синтезирован по методике [6].

Новая методика синтеза комплекса (2S,3R)-треонина. К раствору 65.3 мг (0.66 ммоля) диизопропиламина в 4 мл ТГФ при -40°С в токе аргона прибавляли 330 микл 2М раствора бутиллития в ТГФ. Смесь перемешивали 10 мин, при той же температуре к полученному раствору прибавляли 100 мг (0.2 ммоля) Ni^{II}-(S)-BPB-Gly комплекса и через 10 мин — 116 мг (0,2 ммоля) гексабутилдистанана. После перемешивания полученной смеси в течение 0,5 ч прибавляли 29.2 мг (0.2 ммоля) перекиси третбутила. Контроль за ходом реакции осуществляли методом TCX (SiO₂, CH₃COOC₂H₅: CHCl₃ = 3:1) по исчезновению следов исходного комплекса глицина. После завершения реакции смесь нейтрализовывали 5N АсОН в ТГФ. Из смеси удаляли ТГФ, остаток растворили в хлористом метилене и дважды экстрагировали водой. Объединенные экстракты разделили на силикагеле. Получили 75.08 *мг* комплекса Ni^{II}-(S)-ВРВ(2S,3R)-треонина. Выход 70.0%. Определены физико-химические параметры полученного комплекса, которые с большой точностью соответствовали данным стандартного образца.

Ni^{II}-(S)-BPB-(2S,3R)-Thr: τ. πλ. (λμτ) = 188-190°C, τ. πλ. (oбp.) = 188-190°C; $[\alpha]_D^{20}{}_{\Lambda HT.} = -943.0°C (c = 0.035, CHCl_3),$ $[\alpha]_D^{20}{}_{oбp.} = -943.04°C (c = 0.035, CHCl_3).$

ՆՈՐ ՄՈՏԵՑՈԻՄ ԷՆԱՆԹԻՈՄԵՐԱՊԵՍ ԵՎ ԴԻԱՍՏԵՐԵՈԻԶՈՄԵՐԱՊԵՍ ՄԱՔՈԻՐ β-ՕՔՍԻ-α-ԱՄԻՆԱԹԹՈԻՆԵՐԻ ԱՍԻՄԵՏՐԻԿ ՍԻՆԹԵԶՈԻՄ

Ա. Ս. ՍԱՂՅԱՆ, Ա. Ս. ՊՈՂՈՍՅԱՆ, Ս. Ա. ԴԱԴԱՅԱՆ, Ա. Ս. ԴԱԴԱՅԱՆ, Վ. Ի. ԽՐՈԻՍՏԱԼՅՈՎ և Յու. Ն. ԲԵԼՈԿՈՆ

Հայոնաբերվել է, որ Ni^{II}-(S)-BPB-GIy կոմպլեքսի լիԹիումական էնոլյատի վրա երրորդային բուտիլպերօքսիդ, Հեքսաբուտիլդիստանան և քացախաԹԹվի տետրաՀիդրոֆուրանային լուծույթ ավելացնելիս ասիմետրիկ կոնդենսման ռեակցիան ընթանում է ավելի քան 90%-ով` առաջացնելով գլխավորապես NiII-(S)-BPB-(2S,3R)-Թրեոնինի դիաստերեոմերը: Վերջինիս կառուցվածքն ու բացարձակ կոնֆիդուրացիան Հաստատվել են ՄՄԴ ¹H և ռենտդենկառուցվածքային անալիզի մեԹոդներով: Այլ կերպ ասած, ըստ էության ռեակցիան ընթանում է քացախաԹԹվի փոխարկմամբ ալդեՀիդի, որն էլ փոխաղդում է կոմպլեքսի գլիցինային մնացորդի Հետ:Պրոցեսի մեխանիղմն, ըստ էության, ենթադրում է անազի էնոլյատի միջանկյալ առաջացում և վեր-օ.թս ռեակցիաներ, սակայն դրա Հաստատումը պաՀանջում է լրացուցիչ Հետաղոտություններ: Այսպիսով, նոր ճանապարՀ է բացվում բնական և ոչ բնական ծաղման լայն սպեկտրի և լայն կիրառություն ունեցող β-օ.ջսի-α-ամինաթթուների ասիմետրիկ սինթեզի Համար:

A NEW APPROACH TO THE ASYMMETRIC SYNTHESIS OF ENANTIOMERICALLY AND DIASTEREOISOMERICALLY PURE β-HYDROXY-α-AMINO ACIDS

A. S. SAGHYAN^a, A. S. POGHOSYAN^a, S. A. DADAYAN^a, A. S. DADAYAN^a, V. I. KHRUSTALEV and Yu. N. BELOKON^{,b}

 ^a Scientific and Production Center "Armbiotechnology" NAS RA 14, Gyurjyan Str., Yerevan, 0056, Republic of Armenia E-mail: slavik_dadayan@yahoo.com
^b A. N. Nesmeyanov Institute of Organoelement Compounds RAS

It was found that adding hexabutyldistannan and tertiary butyl peroxide to lithium enolate of glycine Ni^{II} complex followed by adding a solution of acetic acid in tetrahydrofuran resulted in more than 90% conversion of the initial complex At that one diastereoisomer of (2S,3R)-threonine complex was obtained in high yield, its structure was ascertained by ¹H NMR data and X-ray structural analysis. In other words, formally the reaction proceeded through conversion of acetic acid to aldehyde, which reacted with a glycine moiety of the complex. The mechanism of the process evidently includes intermediate formation of the tin enolate and reactions of oxidation and reduction; however additional investigation is required. Thus, a new way to the asymmetric synthesis of a whole class of important amino acids of both protein and non-protein nature has been paved.

ЛИТЕРАТУРА

- Pansare S.V. // J. Amino Acids, Peptides and Proteins // Chem. Soc., London, 1968-1995, v. 1-28.
- [2] Badorrey, Catviela C., Diaz-de-Villegas M.D., Calvez J.A. // Tetrahedron: Asymmetry, 2000, v.11, p.1015.
- [3] Coppola G.M., Shuster H.F. Asymmetric Synthesis. Construction of Chiral Molecules using amino Acids. Toronto / John Wiley & Sons, 1987.
- [4] Soloshonok V.A., Okhura H., Soroshinsky A., Voloshin N., Markovsky A., Belik M., Yamazaki T. // Tetrahedron Lett., 2002, v. 43, p. 5445.
- [5] Belokon' Yu.N., Saghyan A.S., Djamgaryan S.M., Bakhmutov V.I., Belikov V.M. // Tetrahedron, 1988, v. 44, p. 5507.
- [6] Belokon' Yu.N., Saghyan A.S., Djamgaryan S.M., Bakhmutov V.I., Vitt S.V., Batsanov A.S., Struchkov Yu.T., Belikov V.M. // J. Chem. Soc., Perkin Trans., 1990, v. 1, p. 2301.
- [7] Belokon' Yu.N. // Pure and Appl. Chem., 1992, v. 64, p. 1917.
- [8] Belokon' Yu.N. // Janssen Chim. Acta, 1992, v.2, p. 4.
- [9] Sheldrick G.M. // SADABS, v. 2.01, Bruker / Siemens Area Detector Absorption Correction Program; BrukerAXS Inc., Madison, WI, 1998.
- [10] Sheldrick G.M. // SADABS, v. 2.03, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, 2003.
- [11] Nicholson G.J., Frank H., Bayer E.J. // High Resolut. Chromat.Communs., 1979, v. 28, p. 411.