XXIX, № 9, 1976

НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

УДК 666.11.01:546.16

ВЛИЯНИЕ ФТОРА НА СВОЙСТВА СТЕКОЛ В СИСТЕМЕ BaGeO₃—BaB₂O₄—MgF₂

Р. М. ОГАНЕСЯН

Ленинградский технологический институт им. Ленсовета

Поступило 3 XI 1975

Исследовано влияние фтора на стеклообразование, кристаллизационную способность, показатель преломления, плотность, вязкость и электропроводность стекол в системе $BaGeO_3$ — BaB_2O_4 — MgF_2 путем сопоставления с изменением тех же свойств в системе $BaGeO_3$ — BaB_2O_4 —MgO.

Рис. 4, библ. ссылок 10.

Иопользование фторидов элементов II и III групп в оптическом стекловарении позволило получить стекла нового класса, в частности, фторфосфатные, имеющие ряд ценных свойств [1].

Нами впервые в системах BaGeO₈—BaB₂O₄—RF₂ (где R—Mg, Ca, Sr, Ba) были получены фторсодержащие боргерманатные стекла, стеклообразование и некоторые физико-химические свойства которых приведены в работе [2].

Для изучения влияния фтора на свойства полученных стекол в настоящей работе исследованы системы $BaGeO_3-BaB_2O_4-MgF_2$ и $BaGeO_3-BaB_2O_4-MgO$ при постоянном мольном соотношении $BaGeO_3:BaB_2O_4=1:1$.

Экспериментальная часть

Варку стехол в количестве 50—70 г осуществляли в атмосфере аргона в печи с карборундовыми нагревателями, в стеклоуглеродных тиглях при 1200—1250° в течение 30 мин. из реактивов BaGeO₃, BaB₂O₄, MgF₂, MgO марки «ч.», «х. ч.», «ос. ч.».

Области стеклообразования определяли закалкой на воздухе 10—15 г расплава, отлитого на металлическую плиту. Кристаллизационную способность стекол изучали в атмосфере аргона методом принудительной кристаллизации в градиентной печи в интервале 200—1000° в течение 30 мин. Плотность стекол определяли гидростатическим взвешиванием в толуоле, показатель преломления — иммерсионным методом на

микроскопе МИН-8. Вязкость стекол в интервале $10^7 - 10^{12}$ Па-сек ($10^8 - 10^{13}$ пз) измеряли методом вдавливания на вискозиметре ИФ-41 [3]. Энергетические параметры вязкого течения рассчитывали по формулам, предложенным в [4]. Электропроводность стекол измеряли по стандартной методике [5] на плоскопараллельных отшлифованных образцах с нанезенными серебряными электродами.

Воспроизводимость результатов измерений свойств стекол разных варок составляла: по плотности $\pm 2 \cdot 10^{-3}$ г/с.и³, показателю преломления $\pm 3 \cdot 10^{-3}$, вязкости ± 0.11 g η и электропроводности ± 0.15 lg η .

Обсуждение результатов

Введение фтора приводит к увеличению области стеклообразования. Если во фторсодержащих системах стеклообразование прекращается из-за кристаллизации расплава, то в окисных область ограничивается вследствие непровара шихты даже при 1400° (рис. 1).

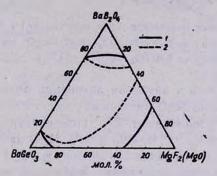
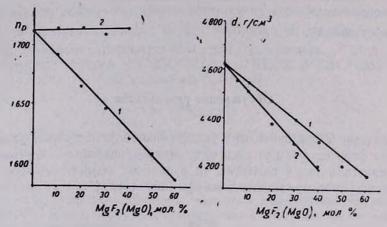


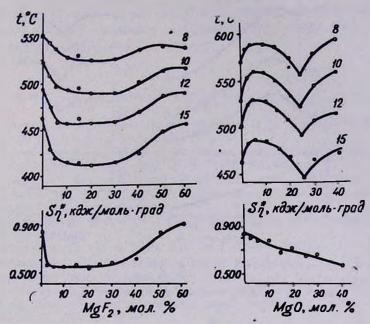
Рис. 1. Области стеклообразования в системах $BaGeO_3-BaB_2O_4-MgF_2(MgO)$. Область прозрачных стекол в системе: $1-BaGeO_3-BaB_2O_4-MgF_2$, $2-BaGeO_3-BaB_2O_4-MgO$.

Стекла, содержащие MgO, обладают более сильной кристаллизационной способностью, чем стекла с фторидом магния: нижняя граница кристаллизации меняется от 620 (для 10 мол.% MgO) до 750° (для 40 мол.% MgO), а верхняя граница—от 940 до 1000°. В системе с MgF₂ с введением фторида резко увеличивается стойкость стекол к кристаллизации, а стекло, содержащее 30 мол.% MgF₂, не кристаллизуется при выдержке 30 мин. в градиентной печи. Однако дальнейшее увеличение содержания фторида приводит к увеличению кристаллизационной способности стекол.

Показатель преломления для стекол, содержащих 0—40 мол.% MgO, изменяется в пределах 1,713—1,710. Замена MgO на MgF2 приводит к уменьшению n_D от 1,713 до 1,596 (рис. 2), что, по-видимому, связано с увеличением в структуре стекла концентрации слабо поляризуемых ионов фтора.

Плотность стекол, содержащих MgF_2 (0—60 мол.%), изменяется от 4,600 до 4,186 $e/c m^3$, а стекол с MgO (0—40 мол.%) — от 4,600 до 4,200 $e/c m^3$. Такие значения плотности фторосодержащих стекол обусловлены большим молекулярным весом MgF_2 и, по-видимому, более плотной упаковкой структурных единиц во фторсодержащих стеклах.




Рис. 2. Изменение показателя преломления (n_D) и плотности (d) в стеклах систем $BaGeO_3-BaB_2O_4-MgF_2(MgO)$ при постоянном мольном соотношении $BaGeO_3:BaB_2O_4=1:1.$ 1 — MgF_2 , 2 — MgO.

Данные по вязкости и энтропии активации вязкого течения приведены на рис. З. Влияние MgO на вязкость имеет сложный характер: добавки до 10 мол.% увеличивают $T_{\eta_{10}}$ (температуру, соответствующую вязкости 10^{12} Па-сек) на 29°, при 25 мол.% MgO наблюдается минимум на кривых вязкости, в интервале 25—40 мол.% MgO имеет место повышение тугоплавкости. Первые добавки MgF₂ до 5 мол.% снижают вязкость ($T_{\eta_{10}}$ уменьшается с 498 до 458°). Дальнейшее увеличение содержания фторида (до 30 мол.%) практически не влияет на вязкость, а увеличение содержания свыше 30 мол.% увеличивает тугоплавкость.

Механизм влияния MgO и MgF₂ на вязкость стекол различен. Можно предположить, что стекло состава (мол.%) 50 BaGeO₃·50 BaB₂O₄, в которое вводятся MgO и MgF₂, химически неоднородно и состоит из боратных и германатных группировок. Кристаллические BaGeO₃ и BaB₂O₄ состоят соответственно из цепей пироксенового типа [6] и [B_3O_6] анионных группировок [7]. По-видимому, ионы магния в виде [MgO₄] или [MgO₆] групп [8] входят в кислородный каркас стекла, достраивая его и соединяя между собой боратные и германатные группировки, о чем свидетельствует увеличение тугоплавкости и уменьшение энтропии активации вязкого течения S.*.

Введение фторида приводит к образованию анионных группировок, представляющих собой более короткие цепочки пироксенового типа или группы $[B_3O_6]$. В результате этого может произойти ослабление связей B-O-B, Ge-O-Ge, сопровождающееся понижением вязкости. Умень-

шение энтропии активации вязкого течения S, показывает, что в данных стеклах магний фторидные группировки способствуют увеличению степени пространственной увязанности стеклообразного каркаса, соединяя между собой боратные и германатные анионные группировки.

Рпс. 3. Изокомы (Ig η =8, 10, 12, 15) и энтропия активации вязкого течения S_{η}^{*} (кдж/моль-град) стекол систем $BaGeO_3$ — BaB_2O_4 — $MgF_2(MgO)$ при постоянном мольном соотношении $BaGeO_3$: BaB_2O_4 =1:1.

Увеличение содержания MgF₂ приводит к еще большему «дроблению» оксидных групировок; при концентрации свыше 30 мол. % определяющими в анионном каркасе стекла будут магнийфторидные группы. При этом происходит изменение хода кривых вязкого течения, приводящее к увеличению тугоплавкости, энтропии активации вязкого течения и кристаллизационной способности.

Согласно данным [9], можно предположить, что исходное стекло состава $50BaGeO_3 \cdot 50BaB_2O_4$ обладает катионной проводимостью, осуществляемой катионами бария.

Из рис. 4 видно, что при введении MgO ход изорезист симбатен ходу изоком, т. е. величина электросопротивления зависит от подвижности структурного каркаса стекла.

При введении MgF₂ (до 15 мол.%) происходит увеличение электросопротивления. Дальнейшие добавки MgF₂ уменьшают его (рис. 4). По-видимому, первоначально количество новых ионов—переносчиков тока, недостаточно, чтобы компенсировать снижение концентрации ответственных за электроперенос катионов бария. Однако, достигнув определенной концентрации, в процессе электропереноса начинают превалировать ионы фтора, т. е. происходит смена характера проводимости с катионного на анионный [10].

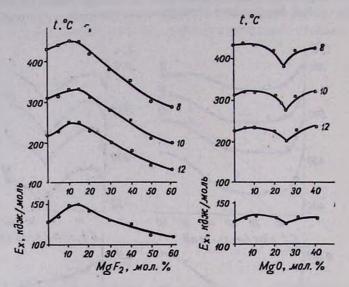


Рис. 4. Изорезисты ($\lg \rho = 8$, 10, 12) и энергия активации проводимости Ех ($\kappa \partial \mathcal{M}/\mathcal{M}$ оль) для стекол систем $BaGeO_3-BaB_2O_4-MgF_3$ (MgO) при постоянном мольном соотношении $BaGeO_3:BaB_2O_4:=1:1$.

Таким образом, замена MgO на MgF₂ приводит к увеличению области стеклообразования и плотности стекол, уменьшению кристаллизационной способности и показателя преломления. Фторсодержащие стекла обладают пониженной вязкостью. Участие фтора в процессе электропереноса приводит к уменьшению электросопротивления стекол.

ՖՏՈՐԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ BaGeO₃—BaB₂O₂—MgF₂ ՍԻՍՏԵՄԻ ԱՊԱԿԻՆԵՐԻ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԻ ՎՐԱ

Ռ. Մ. ՀՈՎՀԱՆՆԻՍՑԱՆ

Ուսումնասիրված է ֆտորի ազդեցությունը $BaGeO_3-BaB_2O_4-MgF_2$ սիստեմի ապակեգոյացման, այդ ապակիների բյուրեղացման հատկության, բեկման ցուցչի, խտության, մածուցիկության և էլեկտրահաղորդականության վրա։ Այդ ապակիների նշված հատկությունները համեմատված են $BaGeO_3-BaB_2O_4-MgO$ սիստեմի ապակիների համապատասխան հատկությունների հետ։

THE EFFECT OF FLUORINE ON SOME PROPERTIES OF BaGeO₃—BaB₂O₄—MgF₂ GLASS SYSTEM

R. M. HOVHANESSIAN

The effect of fluorine on the glass formation, devitrification, refractive index, density, viscosity, and conductivity of the glass system BaGeO₃—BaB₂O₄—MgF₂ was investigated.

ЛИТЕРАТУРА

- 1. Л. И. Демкина, В. Н. Полухин, Л. Н. Урусовская, З. Н. Щеглова, Тр. ГОИ, 39, № 170, 10. Изд. «Машиностроение», Л., 1972.
- 2. Р. М. Оганесян, В. И. Вахрамеев, В. Д. Халилев, Г. И. Журалев, Неорганические стекла, покрытия и материалы, вып. 2, Рига, РПИ, 1975, стр. 89.
- 3. С. В. Немилов, Г. Т. Петровский, ЖПХ, 36, 222 (1963).
- 4. С. В. Немилов, Стеклообразное состояние, Изд. «Наука», М.—Л., 1965, стр. 64.
- 5. О. В. Мазурин, А. С. Левин, Изв. вузов, сер. хим., № 2, 142 (1958).
- 6. Р. Г. Гребенщиков, В. И. Шитова, Н. А. Торопов, Изв. АН СССР, Неорг. матерналы, 3, 1620 (1967).
- 7. A. D. Mighell, A. Perloff, S. Block, Acta cryst., 20, 819 (1986).
- 8. В. А. Колесова. Изв. АН СССР, Неорг. материалы, 1, 2020 (1965).
- 9. Б. Н. Маркин, Р. Л. Мюллер, ЖФХ, 7, 592 (1936).
- Н. Г. Артюшкина, Б. С. Кондратьева, М. Л. Петровская, Н. Г. Суйковская, НТК ЛТИ им. Ленсовета, Секция технологии неорг. веществ и силикатов, Краткие сообщения, Л., 1973, стр. 62.