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Apakensu HI.X., Xypmyasn Ac. K.
Meton ByoHosa—T"anépkuHna B 3a1a4ax NoJBHKHOIO YIIPAaBJIEeHUS CHCTEMAMU ¢ pacnpeaeIéHHbIMH
napamMeTpaMu

Jlnst pemieHys 3a/iad IMOJBMKHOTO YIPABJICHUS] CHCTEMaMH C PAcIpeieIEHHBIMH HapaMeTpaMH IpeisiaraeM
npuMeHUTh MeTol byOHoBa—T"anépkuna. Anroput™ noapoOHO omucaH Ui TPEXMEPHOTO JIMHEHHOTO YpaBHEHHS.
TemIonpoBoAHOCTH. OH IMO3BONSET CBECTH peIIeHHEe 3alauydl yNpaBIeHHs K KOHEUYHOMEPHOU HeIHHeHHOU
npobiaeme MoMmeHTOB. [Ipornenypa momydeHus: mpoGiaeMbl MOMEHTOB HOAPOOHO JEMOHCTPHPYETCsl Ha IpUMepe
OZIHOMEPHOTO ypaBHEHHUsI TEIUIONPOBOAHOCTH. HalijieHo pelieHue Moay4eHHOH MpobiieMbl MOMEHTOB B YaCTHOM
caydae. Ha ocHOBe HONy4eHHBIX pe3y/IbTAaTOB OJHOMEpHas 3ajada Obula cumymupoBaHa B cpexe COMSOL
Multiphysics. BbISBICHEI OCHOBHBIE 3aBHCHMOCTH (DYHKIMH YIpPaBICHHS OT BXOMHBIX JAaHHBIX 3aJadd.
I'paduuecku OTpakeHbI COCTOSHUSI CTEPXKHS I Pa3HbIX (HOCTOSIHHBIX) HMHTCHCHUBHOCTEH wHcTOYHHKA. Jlst
CpaBHEHHsl IPHBEJICHBI COOTBETCTBYIONINE WMIITIOCTPAllMd IPH OTCYTCTBHU YIPABICHUsS (HCTOYHUK HYJIEBOI
MHTCHCUBHOCTH).

B ciydae pacmmpeHHOro Kiacca AOMYCTUMBIX YIpPaBICHHH MpeuiokeHa 3(QeKTHBHAsS CXeMa YHCICHHOTO
PEIICHUS ITOTyYeHHOU CHCTEeMbl HETMHEHHBIX orpaHudeHui. OnpeeneHue mapaMeTpoB yIPaBISHHs CBOAUTCS K
npocTeiinieii 3ajaye HeMMHEHHOTO IPOrPaMMHPOBAHHSL.

We suggest to apply the Bubnov—Galerkin procedure to solve scanning control problems for systems with
distributed parameters. The algorithm is described in details for three-dimensional linear heat equation It allows to
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reduce the solution of control problem to finite-dimensional nonlinear moments problem. The procedure of
derivation of moments problem is illustrated in details on the example of one-dimensional equation of thermal
conductivity. The solution of obtained moments problem is found in a particular case. Based on obtained results a
computer simulation is done using COMSOL Multiphysics platform in one-dimensional case for a rod. The main
dependences of control function against input data of the problem are revealed. The state of the rod for several
(constant) values of the source intensity is expressed in terms of graphs and illustrations. Corresponding
illustrations are brought in case of control absence (null-power source) for comparison.

An effective numerical scheme for solving the obtained system of nonlinear constraints is suggested in the
case of extended class of admissible controls. Calculation of control parameters is reduced to the simplest problem
of nonlinear programming.

Introduction

The problem of bodies heating was always of interest for both engineers and
theoreticians. In view of variety of possibilities to heat given body to a needed regime, as
well as of amount of corresponding resources spent on the heating, a natural question arises
about optimal choice of heating method. Optimality criterion may be different depending
on a particular method: time optimality, heating with source of minimal intensity, heating
with minimal quantity of sources, heating with optimal placements (fixed or changeable) of
sources with given configuration, heating with optimal change of the external temperature
field etc. Internal heat sources, heat sources with localized distribution on boundary of the
heating body, heat sources with ability to change their localization in time discretely or
continuously (scanning sources) can be used for this purpose. One may also fix the
placements of the sources and carry out the heating by controlling the power of the source,
however from control theory for distributed parameters systems point of view that problem
does not have any significance. In [1] various interesting problems of plates and shells
heating optimization are considered using methods of variational calculus.

In [2-4] a practical problem of bodies heating via electronic ray spread out from a
point source, which can be freely moved over the body outer surface along controllable
trajectory was stated by Russian scientist A. G. Butkovskiy and his colleagues. The
problem was the characterization of trajectory for the source which provides required
temperature distribution in the body when the power of the source is prescribed.
Mathematically the problem was the determination of the control function included in the
right-hand side of (linear) heat equation, naturally, in nonlinear manner. In order to solve
the problem the Fourier method of variables separation was applied initially and it was
reduced to an infinite-dimensional nonlinear problem of moments. Even though by that
time the existence and uniqueness of optimal solution of the problem was proved [5],
general algorithm for explicit solution construction was not developed yet. Further
developments in this subject allowed not only describing such an algorithm [6], but to
propose and develop other efficient approaches to solve mobile control problems as well.
Namely, in articles [7, 8] two different methods of control by right-hand side of partial
differential equations— the method of substitution and the method of implementation.
Application of those methods in turn gives a unified approach for solving mobile control
problems. Using the method of substitution first we need to determine such a distributed
control on which the required state of controlled system is achieved and is held further.
Then, using the method of implementation we are able to find unknown parameters of
mobile control close in a certain sense to distributed control obtained earlier by the method
of substitution. The algorithms of all methods described above are outlined in monograph
[9] with many illustrative examples. Articles [10, 11], published after monograph [9], are
devoted to generalization of substitution and implementation methods for two-dimensional
systems, at this the considered heat equations is nonlinear.

In a recently published article by A. G. Butkovskiy [12] the mobile control problem is
referred as one of the most important rigorously unsolved problems in control theory of
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distributed parameter systems. Since the problem has significant practical value and,
nevertheless, is rigorously unsolved, any approximate algorithm with easily implementable
numerical scheme is very important and is required. Other mobile control problems for
distributed parameter systems are considered, for example, in [13—17], mainly for vibrating
systems with distributed parameters.

The Bubnov—Galerkin procedure [18], which initially was proposed for solving
problems in elasticity theory, now is applied to solve boundary value problems arising in
almost all areas of applied mathematics. In recent article [19] an algorithm is proposed for
approximate solving control problems for bilinear systems. The solution is reduced to a
finite-dimensional problem of moments resolvable explicitly. In material distribution,
designs structure and topology optimization etc. problems, mathematically formulated via
bilinear systems, in which the control function does not explicitly depend on one of
independent variables (more often time-variable), application of Butkovskiy's generalized
method [20-25] and the Bubnov—Galerkin procedure in turn is suggested. The algorithm is
applied in one [19, 26] and two-dimensional [27, 28] cases. Its numerical scheme was
turned out to be very simple and easily implementable; solution of a nonlinear
programming problem with equality and inequality type constraints is needed.

In this paper we suggest an approximate procedure for solving mobile (moving,
scanning) control problems in dimensions three. The procedure is explained in details for
spatial linear heat equation subjected to linear boundary conditions. The purpose of the
problem is to explicitly construct a trajectory (motion law) for the heat source in order to
provide required terminal temperature distribution when initial temperature distribution in
the body is given. The solution of the (non-stationary) state equation is approximated via
Bubnov—Galerkin procedure and a coupled system of Cauchy problems with respect to
unknown coefficients of solution expansion is derived. The system is resolved explicitly.
Force the approximating solution to satisfy prescribed terminal condition with required
precision, for determination of the control function, a finite-dimensional system of
necessary and sufficient conditions are obtained. This system is treated as nonlinear
problem of moments. An example of nonlinear problem of moments derivation procedure
is provided for one-dimensional heat equation. The solution of obtained problem is
constructed in a particular case.

Based on obtained results a computational experiment is set up in order to reveal the
sensitivity of a functional on control function (exactly its length) with respect to system
external and internal parameters. Main results are discussed.

In order to derive a solution with easily implementable numerical scheme, the set of
admissible controls is extended into the set of compactly supported Lebesgue measurable
functions in order to accommodate sliding modes and the control function is represented as
a piecewise constant function. Then, the determination of control trajectory parameters is
reduced to a problem of nonlinear programming with constraints of equality and inequality
types. Numerical solution of obtained problem is described through a table and graphs.

List of Notations

Throughout the paper the following notations and abbreviations:

C » (O) — the space of piecewise-continuous in (O functions,
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Q= {q €C, [0, T]; suppgq = [0, T]}— denotes any of the space of

controls U, V um VV, and g — any of control u#,V or W.

supp @ = {x eR”, (p(x) # 0} — the support of function (p(x),

O — the closure, and 0O — the boundary of domain O,
V — the gradient,
P={pec,[0.7];

p(t)<1Lte [O,T]},
C (x, V,Z,t ) — the temperature distribution,
8(x,y, Z) = 5()6)8()/)8(2) — the spatial Dirac function,

T, (x) = CoS (m arccos x) — Chebyshev polynomials of the first kind,

w L m=p,
3, =0, = — Kronecker's symbol,
0, m=#=pu,
1, x>0,
signx =10, x=0,— sign function,
—1, x<0,
1, x>0,

0 (x) =<0.5, x=0,— Heaviside unit step function,
0, x<0,

the set {1, 2,..., N}, for short, we denote by {1; N},

c,— heat capacity,
p — density,

K — coefficient of thermal conductivity,

K
%, = — — thermal diffusivity.
C » P

1. Problem Statement

admissible

Let we are aimed to heat a solid occupying finite domain O C R’ with piecewise

smooth boundary OO, into a prescribed heat-state. Let the boundary of the solid, for
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instance, to be in heat exchange with external medium of constant (null) temperature'. To
achieve the aim we are allowed to use a point heat source with intensity varying in time

p €P, able to move over the surface of the solid along any prescribed piecewise-
continuous trajectory

T= {u eU,veV,weW;supp(x—u), supp(y-v), supp(z—w)c(?} cO,

forall £ €[0,T].

We have an opportunity to heat the body as by choosing a proper intensity law, as well as
an easily realizable trajectory for the source.

The state of the solid satisfies heat equation [2—13]
00
cppa = V[KV®]+p(t)8(x—u(t),y—v(t),z—w(t)), e}

(x,y,z,t) € (’)X(O,T).
It is supposed, that the coefficients of (1) depends on all independent variables, at this
0<c,,p,xeC, (@; C[O,T]), K' e C, (O; C[O,T]). The boundary conditions are

written as follows
©=0, (x,,21)ed0x[0,T]. )

Remark 1. The scanning source can also have other shapes. In general, it has to
satisfy restrictions [2—11]

(p(x,y,z)ZO, suppp c O, Iw(x,y,z)dxdydz=l.
o

Particular cases include cylindrical, elliptical, rectangular shapes [30, 31], and shapes
described by Gauss function [9-11] etc.

Remark 2. As it turns out in practice, control by intensity of the source is not far easy
and, moreover, very expensive in sense of resources spent. At the same time, control by
motion (trajectory) of the source is easily implementable and does not cost so much.
Moreover, there is a wide class of required heat regimes that are unreachable by appropriate
choice of source power and can be achieved only by controlling its motion [9].

The initial temperature distribution in the body is supposed to be known:

@(x,y,z,0)=®0 (x,y,z), (x,y,z)e@. 3)

! Basically, this assumption does not play any significant role for applicability of
suggesting method. In general, it can be replaced by a more practical assumption, however,
as it will be seen below, the boundary conditions, mathematically expressing that
assumption must be necessarily remain linear. Without losing the generality, the boundary
conditions may be chosen to be homogeneous [1].
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Our aim now can be expressed in terms of used notation. We are aimed to explicitly
describe the set of all piecewise-continuous trajectories T, ensuring for solution of initial-
boundary value problem (1)—(3) the following terminal condition

®(x:yvz:T):®T(x,y,Z), (x,y,Z)E@. (4)

We will additionally assume that the power (intensity) of the source is given. We require
also the consistency of boundary conditions with initial and terminal data.

2. Problem Solution

To solve the problem we are going to use the Bubnov—Galerkin procedure. Suppose that
we were able to construct an orthonormal system of ansatz (approximating) functions

{Gm (x, y,z)}meN, satisfying to prescribed boundary conditions. Then, the

approximating solution of (1) will be represented in the following form [18, 32]
0, xy,zt Z(o xy, ), (x,y,z,t)e@x[O,T], 5)

where the coefficients w,, (t ), of the expansion, according to the Bubnov—Galerkin

procedure, are obtained from the following Cauchy problem

N
o (t)—Z;IC,:mm (1)=9Q,(1), (6)
(Du (0) = ®0u’ (7

pe{l; N},

in which

K = chu (x,y,z)V[KVGm (x, y,z)] dxdydz,

Py

Q, (t) = p(t) i?i(x—u(t),y—v(t),z—w(t))csH (x,y,z)dxdydz =

= cp G“(u(t),v(t),w(t))’ peEP.

Conditions (7) are obtained by taking into account the expansion of initial conditions into
ansatz functions

x V. Z Z@Om . x y,z).

Remark 3. In order to improve the convergence of Bubnov—Galerkin procedure,
usually a system of weighted orthogonal functions is taken [31]. Especially, when the
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problem (1)—(3) is considered in a corresponding Sobolev space, in which Chebyshev
polynomials of the first kind form an orthonormal basis, the most reasonable way of

thinking might be the transformation of domain O into cube [— 1,1] X [— 1,1] X [— 1,1],
and as {Gm (x,y,z)}m _, consideration of system {Tm (x)Tn (y)Tk <Z>}m hen
1

orthonormal in [— 1, 1] X [— 1, 1] X [— 1, 1] , with weight [(1 —x° ) (1 — y2 ) (1 —z? )] N
Let us write the Cauchy problem (6), (7) in matrix form as follows

o' =Ko+Q, 8)

®(0)=0,, ©)

in which ®, Q and ®, denote vector columns consisting of unknown functions, right-

hand sides and initial function (6), (7), respectively, and JC denotes matrix consisting of
coefficients of system (6). The general solution of Cauchy problem (8), (9) gives the
Cauchy integral representation formula

o(1)=0[1,0]8, + [®[17]0(x)dx, (1)

in which ® [t, T] is the (fundamental) Cauchy matrix of the system. Force function (10) to

satisfy the expansion of terminal condition (4) with respect to chosen ansatz functions

{Gm (xa y,Z)}m (LN} :

N
®T (x,y,z) = Z®Tmcm (x,y,z),

m=l1

in order to derive a system on necessary and sufficient conditions with respect to unknown
functions in purpose of system controllability

O[T,1]Q(1)dT1=0, -D[T,0]0,, (11)

S —y

in which @T is vector column consisting of coefficients of expansion of (4) mentioned
above.

Remark 4. As a result of computation it might turn out that for some finite N, € N

approximating solution (5) is exact solution for the problem, i.e. the residue obtained by
substitution of approximating solution (5) in equation (1) vanishes uniformly. Otherwise,
the number NV of ansatz functions in (5) can be chosen in a manner to provide a required
precision. For instance, it can be chosen such that

N

®0 - Z ®0me

m=1

N

®T - Z ®Tm6m

m=1

— min, — min,

in metrics of spaces of initial and terminal data. Error estimates for Bubnov—Galerkin
procedure is carried out in [31].
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Note, that unknown controls also depends on choice of N so we should rather use
symbols (t ) s Vi (t) and wy (t) Howoever, to be short in text, we shall omit that fact
and just keep it in mind throughout the whole paper.

The only parameter in system (11) for fixed 7" is the required trajectory, the
components of which are figured out in the functional from left-hand side of the system. At
the same time, its right-hand side is the value of that functional on a particular admissible
trajectory. Namely, that admissible trajectory we are seeking for.

The components of required trajectory can be determined from system (11) in several
manners. For instance, one may choose a cost functional having proper physical
interpretation® for a particular problem and minimize it with respect to control functions
which in their turn satisfy equality type restrictions (11). This problem can be solved
through efficient numerical methods of nonlinear programming [33]. System (11) can be
interpreted as a classical problem of moments [2—6, 9, 12] as well. In view of nonlinearity
of inclusion of trajectory T into components of vector column €2, the derived problem of

moments, naturally, will be nonlinear.
3. The Nonlinear Problem of Moments in One-Dimensional Case

Let us illustrate the derivation scheme of system (11) in the simplest one-dimensional
case for a rod with constant parameters. Let the object of heating is a sufficiently thin
homogeneous rod thermo-isolated at edges. Figure 1 shows the computational model
simulating the influence of a point heat source on the rod. Then, the solution of the
corresponding one-dimensional heat equation will satisfy the following boundary
conditions (after rescaling all variables and functions)

©(-1,¢)=0(1,1)=0, 1€[0,T],

The control function (in this case the trajectory has only one component) must satisfy to
restriction ‘u (Z)‘ <1 forall t € [O,T].

2 As such a functional one may take, for instance

L[u,v,w]=1\/L22(t)+\>2(t)+w2(t)dt,

which in our treatment characterizes the trajectory of the source.
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052

0.4 0.4

Figure 1. The computational form of a point source.
Initial and terminal data are given through the following functions
®(x,0) =0, (x), @(x,T) =0, (x), xXe [—1,1].

As system of ansatz functions in this case we may consider, for instance, the system of

trigonometric sines { sin (nmx)} N obviously satisfying prescribed boundary conditions.
me
Then

m

Kt = —)((Tcm)2 isin(nmx)sin(npx) dx = —x(nm)2 8",
Q (1)= iL;)j-IS(x—u(t))sin(nux)dx =12L;)sin(nuu(t)), peP.

Instead of coupled system (6), (7) now for unknowns ®, (t ) we shall derive the

following independent system of Cauchy problems

o, (0)+ 2 () 0, (1)~ 2, (1), @
®,(0)=0,,, (13)
ne {l; N},

in which ®0u are the coefficients of the expansion of initial data with respect to chosen

ansatz functions. The general solution of system (12), (13) reads as
o, ()= {G)Ou + Iexp[x(nu)z r} Q, (r)dt} exp[—x(nu)2 t}, pe{l;N}. (14)
0

Force this function to satisfy to expansion of terminal condition with respect to chosen
ansatz functions, we will arrive at
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T
2 2
Iexp[x(nu) r} Q, (1)dt=0,, exp[x(nu) T} -0,,, ne{l;N},
0
which coincides with corresponding moment equalities from [2-6, 9, 12].

After determination of required trajectory u (l‘) from that system, the approximating

solution of corresponding one-dimensional problem will be

O, (x,t) = g[GDO“ +Iexp[x(nu)2 r} Q, (T)d‘t:| exp[—x(nu)z t]sin(n’px),
(x,1) e[~ 11]x[0,T]. (15)

Let the initial temperature distribution in the rod considered in the previous section is

given as follows @(x,O) = sin(nx), Xe [—1,1], and we are required to heat the rod
before some fixed 7' into a state
O(x,T)= {

®, =const, xe(-1,1),
0, x=4=I.

The power of the source is constant: p(T) = p, =const. Let us first determine the

coefficients of the expansion of initial and terminal functions into chosen ansatz functions.
It is obvious that

20
0, =8, Oy, = E[1-(-1)']

therefore from (14) we will have

T
Iexp[x(nu)z r}sin(nuu(r))dtz/\/lu, ne{l;N}, (16)
0
M, :ﬂ(am exp[x(np)z T}—Cpp—pSL, pe{l;N}.
0 0

It is quite easy to see that M, =0, M = O(pfl ), L —> oo, Figure 2 shows the

discrete dependence M WO, HE {1; 200} , which is almost the same for all values of
parameters taken.

For determination of control function from (16), we will first use the algorithm for
solving nonlinear problem of moments suggested in [6, 9]. Let us introduce the expression

T
Al o) = [max oy, (4o Lo Tt ), u(7)] <1,
0
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in which
N

Ay (ll,lz,...,lN,t,u) = Z:lu exp[x(nu)z ’C} sin(nuu(t))
=l

Zu’ ne {l; N } , are undetermined multipliers, at this

N
I >0.
pn=l1

Then, we calculate the derivative of expression A, (ll,lz,...,l o ’C,u) with respect to u

and find its roots. As a result we get

o,

= ng ul, exp[)((m,t)2 r} cos(nuu(r)) =0.

Figure 2. The discrete dependence /\/lH < W

The analytical exact solution of derived functional equation for any N € N is very hard to
achieve. For fixed N € N it can be done using the system of symbolic computation
Wolfram Mathematica. It has the simplest form for N =2 :

T 2

uy (1) = + L arceos| - n’ (1:)+l —n(t)},

n(t) :81—}exp[—3xnzr] > —%, t€[0,T].
2

The last equality follows from the fact that the control trajectory must be real-valued. It is

easy to see that the functional A (11 5 Zz R u) does not satisfy condition of theorem 2 from [9]

for all /,/,. In such cases according to [9] one is recommended to transform the moment

equalities into the following ones
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2 —_
exp[xnzr][sin(nu(r))—y] dt=M, —y% =M,

O —y

_Iexp[x(Zn)z 1:} sin(2nu(r))dt =0,

in which y = const is chosen in such a way that the new functional A (ll .1, u) becomes

positive for all /,,1,.

After some algebraic rearrangements, one can prove that

O, [ 1
sign 81,{22 =Fsign|/ (1i 1+2T]2] ,

thus for sign/, =1 we have

Ay (4,0, tu ) =mink, (1,5, t,u), A, (1,5, tu,)=mink, (1,5,,t,u),
Ay (0,0, tuy ) =max A, (1,5, t,u), A, (L,0,t,u,)=maxX,(4,1,,t,u),

and for sign/, = —1—

A, (ll,lz,r,ul) = mflxkz (ll,lz,t,u), A, (ll,lz,t,u4) = I’l’l:lX)uz (ll,lz,r,u),
A, (11,12,t,u2) = muink2 (ll,lz,t,u), A, (ll,lz,t,u3) = muink2 (ll,lz,t,u).
Moreover, it is easy to check that

My (1,0, T ) ==y (L, L, Tuy )y Ay (Du 0, Ty ) ==y (1,0, Tuy).

It is necessary and sufficient for solvability of system (16) fulfilment of [6, 9]

r[ni[nA(Zl,lz,u)Zl, with LM +LM, =1.

an

Since in our particular case /\/l2 =0, therefore ll is immediately defined. Substituting it

into expression of A (11 .1, u) , for solvability of problem of moments (16) we derive

min A L,,lz,u >1,
A Ml

where /, may be computed from by efficient numerical methods of nonlinear programming

[33]. If for some l; in the last inequality the equality sign takes place, then for almost

every T € [0, T ] the solution of (16) satisfies the following maximum condition [6, 9]
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1 1
M| —. 0, nu’ |[=max A, | —,0[,tu |
M “ M

In order to define an initial approximation to start computing lzn one may use the restriction

exp [—3xn2T ]

41’](1:) >-1, te [O,T], from where it follows that [, >— -
2M

. Then,

_exp [—3xn2T]

will be the required initial approximation for computing l; .

oM,
Computations are done for various values of dimensionless parameters
, L x T e, T.
=X =————and p, = p. -

PT cplT " lepT’
p p

in which / is the half-length of the rod, 7, is the prescribed heating time, p. is the

intensity of the source, and ©, is a scaling intensity for temperature distribution in the rod.

Figure 3 expresses the dependence A(ll,lz,u") 1 for ¢ =1.11-10" m%sec

(copper) and 7' =2m. In this case [, =0.088, rr}inA(ll,lz,u"): 3.97>1. If for

fixed 7y, /[, is positive, the minimum in (17) is attained with u° =u, (t), otherwise —

with u° = u, (t ) , at this in both cases l; is equal to its first approximation.

Figure 3. The dependence A(ll,lz,u4) <> [, (left) and A(ll, lz,ul) <> [, (right) for a

rod made from copper: Y =1.1 1-107* m?sec.

In order to reveal the sensitivity of control function with respect to other external and

internal parameters of the system, we have computed the length of trajectory #° for
various combinations of those parameters. It turned out, that the control function is most
sensitive with respect to rod length, at this for fixed length of the rod, the length of control
trajectory does not sufficiently depend on rod material (computations are done for rods
made from copper, aluminum, silver and steel, for which 7y has almost the same order).
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With increase (decay) of time 7, when the intensity of the source is fixed, the quantity

L [u*] irregularly decreases (increases). It turned out as well that the numerical scheme of

this algorithm requires high computational cost.

5. Numerics

On the basis of obtained results a computational experiment is set up, the main results
of which are expressed graphically on Figures 4-11. The rod has length 2 m, and its cross
sectional area (square) is equal to 1/ 40 m?. Physical characteristics of the rod are identical
to those of copper. Figure 4 (left) shows the computational analogue of the rod, which is
divided into 140 parts (elements), due to which its degrees of freedom (DOF) are equal to
4542 (2427 of them are internal). Figure 4 (right) shows so-called convergence plot,
characterizing the reciprocal of the time step size versus the time step.

400}

al of step size

Reciproc.

8 10
Time step

Figure 4. Computational analogue of the rod (left) and convergence plot (right).

On Figure 5 the temperature distribution along the rod length is plotted on fixed time
moment #, = 250 sec for four particular values of the source intensity P:- Figure 6
shows the temperature distribution in spatial model of the rod for p. =0 and £ =0
(left), t. = 250 sec (right). Figure 7 shows the temperature distribution in spatial model of
the rod for p, = 7.5 J/sec and t, = 0 (left), £, =250 sec (right).
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Figure 5. Temperature distribution along the rod length for #, = 250 sec and different
intensities of the source: p, = 0 (solid line), p, = 7.5 J/sec (dotted line), p. =12
J/sec (dashed line), p, =15 J/sec (dash-dot line).

On Figure 8 the temperature distribution along the rod length is plotted on fixed time
moment f, =350 sec for four particular values of the source intensity p.. Figure 9

shows the temperature distribution in spatial model of the rod for p, =0 (left), p, =3
J/sec (right). On Figure 10 the temperature distribution along the rod length is plotted on
fixed time moment ¢, =450 sec for four particular values of the source intensity P+-
Figure 9 shows the temperature distribution in spatial model of the rod for p, = 0 (left),
p. = 1.4 J/sec (right).
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08 0.8

= 000 b 0.3

Figure 6. The state of the rod for p. =0 £, =0 (left) and . = 250 sec (right).
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Figure 7. The state of the rod for p, = 7.5 J/sec, t, =0 (left) and 7. = 250 sec (right).
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Figure 8. Temperature distribution along the rod length for #, = 350 sec and different
intensities of the source: p. = 0 (solid line), p. = 3 J/sec (dotted line), p. = 7.5 J/sec
(dashed line), p. =12 J/sec (dash-dot line).
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Figure 9. The state of the rod for £, =350 sec, p. =0 (left), p. =3 J/sec (right).
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Figure 10. Temperature distribution along the rod length for ¢, = 450 sec and different

intensities of the source: p. = 0 (solid line), p, = 1.4 J/sec (dotted line), p. = 4.2

70

J/sec (dashed line), p. =7 J/sec (dash-dot line).



+0.03 +0.07

0.8
0.6
0.4
10.2
(0
-D:2
-0.4
-0.6

-0.8 -0.8

)“‘LK ".0.03 LS t,»c *0.06
Figure 11. The state of the rod for £, =450 sec, p. =0 (left), p. =1.4 J/sec (right).

6. Introduction of Sliding Modes

As it was mentioned above, the realization of numerical scheme of the algorithm
chosen for solving nonlinear problem of moments requires high computational costs. The
situation gets even worse for large /V; the number of required operations, and therefore
computational time, essentially increases. Besides, there is a wide class of initial and
required heating regimes that are unreachable by piecewise-continuous trajectories of heat
the source with prescribed intensity. However, it turns out [9], that it can be circumvented
by extending the set of admissible controls including in it sliding modes. Let us extend the
set of admissible controls to the set

Z/{={ueL1 [O,T]; suppug[O,T],

u|<1},

and to represent the trajectory of the source as a piecewise-constant function [20, 25, 27,
28, 34]

u(t)ziuk [6(1—1,,)—-0(t—1,)], t€[0,T], (18)

uniquely defined through unknown parameters #, and £, ke {I;M } , which have to be
found from the following system of equality type constraints

M

;Z[eXp[x(nu)z tk]—exp[a(w)z fkflﬂsin(ﬁwk) =M, 19

x(nu)z P

pe{l;N}.

This finite dimensional discrete system is obtained by substitution of (18) into (16).
Note also, that in general the control (18) is discontinuous in switching points

t, ke {l;M }, where it has second order discontinuities.

The problem of computation of unknowns #, and 7, ke {I;M }, now can be

stated in terms of nonlinear programming, taking functional
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L=

characterizing the length of required trajectory, as cost functional. To system of equality
type constraints (19) one has to add the following restrictions of inequality type

| <1, 0<¢ <, <T, ke{;M}.

Opportunities of numerical minimization of Wolfram Mathematica 10 package allows
to solve that problem very efficiently and without too much computational costs even fo

M and N large enough (using the built-in operators NMinimize, FindMinimum,
NMinValue and FindMinValue). For solving this problem numerically with precision €

only O(S_l) operations are needed [33]. In Table 1 parameters of control function are

presented for various combinations of ratio ® / P, > coefficient o’ and parameter 7.

For instance, when O, /p0 =-0.2, 0> =4.7-10", T = 47, the control function takes

the form

u(1)=0.99[0(¢r-0.)-0(r—2.81)+6(r—2.82)-0(r-12.55) |+
+0.43[0(¢-12.55)-0(¢-12.56) | +
+0.82[ 0(1-12.56)—0(r—4m) ], t €[0,4n].
The existence of solution to the problem is checked in traditional manners [33].

Corresponding restrictions obtained as a result will allow us to underline the boundary of
application of suggested scheme.

®/py | 0’10 | T uk ty
u =uy, =us =u, =0, t,=t,=041,
0.25 386 | 2m | u,=0.78,u,=0.58 t;=t,=0.62,
u, = 0.66 t;=136,1t,=194
u, =0, u, =0.38, t,=0.,1¢=0.03,

—0.2 437 | 4n | uy=043,u, =082, | ;=281 =232,
u, =uy, =u; =099 | t,=12.55,1, =12.56
u, =0.76, u; = 0.15, t, =024, =041,
0.5 1.38 | 4n | ug=0.49,u,=0.7, t;,=0.62,t, = 0.65,
u =us=u, =0 t,=127,1, =192

Table 1. Parameters of control function for M=10.

Besides providing an efficient numerical scheme, function (18) can be easily carried
out in practice and has a simple physical interpretation; it characterizes piecewise-constant
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trajectory for the source, namely in whole time-interval [tkfl R tk] the source heats the point

X = u, ofthe rod.

Conclusion

In this article we propose a new approximate algorithm for solving problems of
mobile control for systems with distributed parameters. The algorithm is based on the
Bubnov-Galerkin procedure and is set up on example of three-dimensional heat equation
with parameters varying in time and spatial coordinates. Mathematical statement of the
problem requires determination of a control function included in right-hand side of the
governing equation in general nonlinearly. The Bubnov-Galerkin procedure allows to
reduce the problem to a finite dimensional system of equality type constraints treated here
as classical problem of moments. Numerical simulations done on the basis of obtained
formulas for one-dimensional thin rod reveal the main dependences of control function
from all other external and internal parameters of the system. A computational experiment
is set up for thin rod made from copper, the main results of which are brought graphically.

It was observed that the method of solution chosen requires high computational costs
and thus not efficient. In order to get an efficient numerical scheme the set of admissible
controls is extended into set of Lebesgue measurable functions compactly supported in
boundary of considered domain allowing to use sliding modes. The unknown function is
represented as piecewise constant (discontinuous in general), the parameters of which are to
be computed from a problem of nonlinear programming under equality and inequality type
constraints.

One of the algorithm privileges is that it also can be applied for numerical solution of
mobile control problems for nonlinear or other type of state equations (including integral,
integro-differential, differential-difference etc.), equations with wvariable coefficients,
particularly, for wave equation, for coupled systems of mentioned equations, and for
sources of other forms as well. One of essential disadvantages of the method is its
applicability only in the case of linear boundary conditions.
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