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Abstract. The paper considers the following problem of hypotheses testing: based on a finite
realization {X(t), 0 <t <1’} of a zero mean real-valued mean square continuous stationary
Gaussian process X (t), t € R, construct goodness-of-fit tests for testing a hypothesis Ho that
the hypothetical spectral density of the process X (t) has the specified form, We show that in
case where the hypothetical spectral density of X(t) does not depend on unknown parameters
(the hypothesis Hp is simple), then the suggested test statistic has a chi-square distribution. In
the case where the hypothesis Hp is composite, that is, the hypothetical spectral density of X(t)
depends on an unknown p-dimensional vector parameter, we choose an appropriate estimator
for unknown parameter and describe the limiting distribution of the test statistic, which is
gimilar to that of obtained by Chernov and Lehman in the case of independent observations.

The testing procedure works both for short- and long-memory models.!
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Keywords: Goodness-of-fit test; chi-square distribution; continyous-time stationary
process; periodogram; spectral density.

1. INTRODUCTION

Suppose we observe a finite realization X7 := {X(¢),0 < t < T} of a zero
mean real-valued mean square continuous stationary Gaussian process X (1), t € R,
possessing a spectral density function.

In this paper, we consider the following problem of hypotheses testing: based
on a sample X+ construct goodness-of-fit tests for testing a hypothesis Hy that
the spectral density function of the process X(t) has the specified form. We will
distinguish the following two cases:

a) The hypothesis Hy is simple, that is, the hypothetical spectral density f())
of X(t) does not depend on unknown parameters.

b) The hypothesis Hy is composite, that is, the hypothetical spectral density
f(A) of X(t) depends on an unknown p-dimensional vector parameter ¢ =

!This research was partially supported by National Science Foundation Grant #DMS-1309009
at Boston University.
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(6y....,6,) €S, that is, f(A) = f(\8), A€ R, 8 €S, where S is an open

set of Buclidean space R?,
We first consider the relatively easy case a) of simple hypothesis Hy. Denote by
I7(\) the continuous periodogram (the empirical spectral density) of the process

X(1):
2

T -
f X(e " dt
0

To test the hypothesis Hp, it is natural to introduce a measure of divergence

(disparity) of the hypothetical and empirical spectral densities, and construct a

goodness-of-fit test based on the distribution of the chosen measure. There are
different type of such measures of divergence.

In this paper, as a measure of divergence of the hypothetical spectral density

" f(A) and empirical spectral density I7(A), we consider the m—dimensional random

(1.1) Ip(A) = ﬁ

vector
(1.2) 37 = (®17-+ -, Bmr)
with elements
VT [* [In(\ '
(1.3) @®jr:= ®r(Xr) = E-/:m [ ;((,\)) - 1] wi(Ndr, i=1,2,...,m,

where {;(}),  =1,2,...,m} is some orthonormal system on R:

+90
(19) [ o0 aa= b

-0

We show that under wide counditions on f(A) and ¢;(A), the random vector ®qp
has asymptotically N(0, I,,)-normal distributiont as T —+ oo, where I, is m X m
identity matrix, and the components ®xr and ®;7 are asymptotically uncorrelated
for k # j. Therefore in the case of simple hjpothesis Hp, we can use the statistics
m

(1.3) Sr = Sr(Xr) = ¥p(X7)®r(X7) = ) 8%r(X1),

2 j=1
which for T — oc will have a x? distribution with m degrees of freedom.

Thus, fixing an asymptotic level of significance a we can consider the class of
goodness-of-fit tests for testing the simple hypothesis Hy about the form of the
spectral density f with asymptotic level of significance a determined by critical
regions of the form {xz : Sp(xz) > da}, where Sy(xq) is given by (1.3), and
dy, is the a-quantile of y2-distribution with m degrees of freedom, that is, d, is
determined from the condition

(1.6) PO® > da) = /.,, T B )i
12
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where k., (z) is the density of x*~distribution with m degrees of [reedom.

In the case b) of composite hypothesis Hy, that is, when the hypothetical spectral
density function f(A,#) of the underlying process X (£) depends on an unknown p-
dimensional parameter & = (6,,...,6,)’, the problem of construction of goodness-
of-fit tests becomes more complex, because first the unknown parameter has to be
estimated. It is important to remark that in this case the limiting distribution of
the test statistic will change in accordance with properties of an estimator of 8, and
generally will not be a x?-distribution.

For testing a composite hypothesis Hp, we again can use statistics of type
(1.3), but with a statistical estimator @7 instead of unknown 6. The corresponding
statistics can be written as follows:

m
(L7)  Sr(fr) = Sr(Xr,0r) i= ¥ (X1, 0r) 01 (X1, 07) = Y 81(Fr),

i=1
where now
(1.8) ®r(Xz,b7) = (817(X1.8r), ..., Oz (X7, br))
with elements
(1.9)  @;r(Xr,0r) := [me [-IL(Z\.)—

Vi J_e L f(7,8r)

So, we must choose an appropriate statistical estimator Ep for unknown 6, and
determine the limiting distribution of statistic' (1.7). Then, having the limiting
distribution of statistic (1.7), for given level of significance o we can consider the
class of goodness-of-fit tests for testing the composite hypothesis Hy about the
form of the spectral density f with asymptotic level of significance o determined
by critical regions of the form '

- 1] pi(A)dN, i=1,2,...,m.

(1.10) {xr: Sp(xp,0r)> da},

where d,, is the a-quantile of the limiting distribution of the statistic (1.7), that is,

d, is determined from the condition
00

(1:11) / kp(z)dz = o
da

where & (z) is the density of the limiting distribution of Sz (67) defined by (1.7).

The limiting distribution of statistic (1.5) for discrete-time Gaussian stationary

processes was considered by Hannan [9]. For independent observations the limiting

distributions of statistics of type (1.7) with various statistical estimators 7 have

been considered by many authors (see, e.g., Chernov and Lehman [2], Chibisov [3],

Cramer [4], Kendall and Stuart [10], Dzhaparidze and Nikulin [14], and references
13
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therein). For ohservations generated by discrete-time short-memory Gaussian stalionary
processes the limiting distribution of statistics (1.7) for dilferent statistical estimators

fr of unknown parameter 6 has been studied by Dzhaparidze [5] and Osidze [11],
[12]. (Recall that a stationary processes X(t) is of short-memory if the spectral
density f()) of X(t) is bounded away from zero and infinity, that is, there are
constants C; and Cy such that 0 < C; € f(A) £ C2 < 00.) In the case where the
spectral density f(A) has zeros and/or poles, the limiting distribution of statistics
(1.7) for discrete-time processes has been described in Ginovyan [8].

The present paper extends some results of the above cited references to the
continuous-time case and for a broader class of spectral densities possibly possessing
zeros and poles.

The rest of the paper is organized as follows: In Section 2 we state the main
results of the paper Theorems 2.1 and 2.2. In Section 3 we present some auxiliary
results. Section 4 contains proofs of Theorems 2.1 and 2.2.

2. THE MAIN RESULTS

We first introduce some notation, definitions and assumptions.

Given numbers p > 1,0 < a < 1, r € Ny := NU {0}, where N is the set of
natural nuimbers, we set § = a + r and denote by H,(8) the LP-Hélder class, that
is, the class of those [unctions ¥(A) € L*(R), which have r-th derivatives in LP(R)
and with some positive constant C satisfy

19+ k) = O)llp < ClhI.

Definition 2.1. We say that a pair of inlegrable functions (f(A),g(})), A € R,
salisfies condilion (3(), and write (f,g) € (30), of f(A) € Hp(B1) for 1 >0, p> 1
and g(\) € Hy(B2) for B2 >0, ¢ > 1 with'1/p+1/q =1, and one of the condilions
a) - d) is fulfilled:

a) By > 1/p, B2 >1/q,

b) B1 < 1/p, B2 £1/q and By + B2 > 1/2,

c) Br>1/p, 1/q-1/2< B2 <1/q,

d) B2>1/q, 1/p—1/2<p <1/p.

The next theorem contains sufficient conditions for statistic Sy, given by (1.5), to
have a limiting (as T' — co) x2-distribution with m degrees of freedom, extending
the result stated in Hannan [9] (p. 94).

Theorem 2.1. Let the spectral density f(A) and the orthonormal functions {p;(}), j =
1,2,...,m} be such that (f,g;) € (H) for all j = 1,2,...,m, where g; = ¢;/f.
14
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Then the limiting (us T — =) distribution of statistics Sy = Sr(Xr) given by
(1.5) is a x*-distribution with m degrees of freedom.

Now we consider the case of composite hypothesis Hy, and assume that the
hypothetical spectral density f = f(A,#) is known with the exception of a vector
parameter 8 = (6y,...,0,) € © C R”. In order to construct the corresponding test,
we first have to choose an appropriate statistical estimator O for the unknown
parameter 6, constructed on the basis of a sample X = {X(t),0< ¢t < T}.

Let us introduce the following set of assumptions:

Al) The true value 0y of the parameter 8 belongs to a bounded closed set ©
contained in an open set § in the p-dimensional Euclidean space R”.

A2) 1f 0, and 8; are two distinct points of ©, then f(\,0;) # f(\,02) almost
everywhere in R with respect to the Lebesgue measure.

A3) For 0 € ©, (f,9;) € (K) for all j = 1,2....,m, where f = f(A,0) and
gi = 2iN/1(\,6).

Ad) For 8 € ©, (f,hij) € (H) for all k = 1,2,...,p and j = 1,2,...,m, where
f=f(\0) and hy; = By, 0 4 1(),0).

J(A,0) 96;,
A5) The (p x p)-matrix T'(6o) = ||k (f0)||x j=17 With elements

@) @) =g [ [a,%mf(»\,e)]h% [a%lnf(a\.ﬂ)] A

-0 0=0q

is nonsingular.
AG) There exists a v/T—consistent estimator &7 for the parameter § such that the

following asymptotic relation holds:
(2.2) VT (87 — 8y) — I'""'(60) Ar(60) = 0p(1),
where I'~1(0p) is the inverse of the matrix I'(8o) defined in A3), A7 (8) = (Ayr(0). . ..,

Apr(f)) is a p-dimensional random vector with components

T2 T I 8 . R
(23} AL-;-(B) = ﬁ_m [m — 1} BE‘- In f(:\, 9) d)l, k= ],p,

and the term op(1) tends to zero in probability as T — oco. (Recall that an estimator
By for 6 is said to be vT—consistent if vT(67 — 8) is bounded in probability).
Let B(0) = |[bsk (0|75, k=i be & (m x p)-matrix with clements

10 a
(2.4) byx(6) = = f_ e S 6)
where @;(A) (7 = I,m) are the functions from (1.3).
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Theorem 2.2. Under the assumptions A1)-A6) the limiting disiribulion (as T —
>c) of the statistics Sp(Xr,0r) given by (1.7), coincides with the distribution of

the random variable
m—=p

P
- 2 L £2
(2.3) 5+ D i Emptan

where &, j = I,m, are iid N(0,1) random variables, while the numbers vy (0 <
v < 1), k =T,p, are the roots relative lo v of equation

(2.6) det [(1 — »)I'(6p) — B'(6o) B(60)] = 0.

Remark 2.1. For independent observations the result of Theorem 2.2 was first
obtained by Chernov and Lehman [2] (see, also, Chibisov [3]). For observations
generated by discrete-time short-memory Gaussian stationary processes the result
was stated by Osidze [11], [12] (see, also, Dzhaparidze [5]). In the case where the
spectral density has zeros and/or poles, the result for discrete-time processes was
proved by Ginovyan [8]. Note also that for continuous-time processes with rational
spectral densities Theorem 2.2 under more restrictive assumptions was stated by

Osidze [11], |12].

3. LEMMAS

Given a number 7' > 0 and an integrable real symmetric function h()\) defined
on R, the T-truncated Toeplitz operator gencrated by h(A), denoted by W (h), is
defined by the following equation (see, e.g., [6]):

T
(3.1) [Wr(h)u](t) = -/u h(t — s)u(s)ds, wu(s)e L*[0, 77,
where A(-) is the Fourier transform of h(-]:I

i(t) = /_ i P R(A)dA.

oc

For the proof of the next two lemmas we refer to [6], [7].

Lemma 3.1. Let hi(A), i = 1,2,...,m, be integrable real symmetric functions
defined on R such that by € L'(R)NL™(R), p; > 1, i = 1,2,...,m, with 1/py +
<o+ 1/pm < 1. Then the following limiting relation holds:

) 1 m 0 oo m
(3.2) Ji = tr [[[lw-r(h.-)] = (2m)™} /_ L [Hl hi()\)] dA,
where tr[A] stands for the trace of an operator A.
16
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Lemma 3.2, Lei f(A) be the spectral densily of the process X (1) and g()) be an
integrable real symmeiric function defined on R such that (f.g) € (H). Let I7()\)
be the periodogram of X (t) given by (1.1). Then the random variable

=
(3.3) nr =TY? f [Ir(X) = f(N)] g(A) dA
-5
has asymplolically (as T — oo) normal distribution with 0 mean and variance o :

(3.4) o iy f T2(0) g2(A) dA.

Below we will use the following well-known result, which is known as the Cramér-
Wold device (or theorem) (see [1], Theorem 29.4).

Lemma 3.3 (Cramér-Wold device). For random vectors X,, = (Xu1,...,Xnk)
and X = (X,...,Xg) a necessary and sufficient condition for X, 4 X is that
Zf:;‘ixni 5 Zlet,-){,- for each t = (t1,...,tx) € R¥, where £ stands for

convergence in distribution.

Consider the (m+p)-dimensional random vector column ¥z (0) = ($r(0), A(F)),
where ¢7:(€) is defined by (1.2), (1.3), while A(f) is as in assumption AG).
Using Cramér-Wold device, as an immediate consequence of Lernma 3.2 we can

state the following result.

Lemma 3.4. Under the assumptions of Theorem 2.2, the random vector Uy () =
(¢ (0), A(0)) has asymptotically N(0,G(0g)) - normal distribution as T — oo with

_(I  B@)
bl ( B(00) T(6o) )

where I, is m x m idenlily matriz, and B(f) is the (m x p)-matriz with elements

given by (2.4).

Lemma 3.5. Let é:r be a \/T-consistent estimator for unknown parameter 0. Then
under the assumptions of Theorem 2.2, for T — oo the following asymptotic relation
holds:

(3.5) &p(br) = D1(6y) — VTB(6o) (07 — 60) + op(1),

where B is defined by (2.4), and term op(1) tends to zero in probabilily as 1 — <.
Proof. Using the mean value theorem we can write

~ NS 1 1
®;7(0r) — @;7(6) = _{/4__1r/_m Ir(t) [f(t.gr) = F@60) w;j(t)dt
17 )
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(3.6) v’_ Z(&a‘ 9&0)/ I'r(-')[f(t 9) 90, = In f(t, 9)]9_&%&) dt,

where . € (60, B7). Since @r is a VT—-consistent estimator for 6 to complete the
proof of (3.5), it is enough to show that as T — co we have

O 1 9 (\dt = bs =
(3.7) ﬁf_m.f-,u(xt) [ma—g;lnf(t,ﬂ)]ha'w,(t) it = bjk(0y) + op(1),

where b are as in (2.4).
1
= —In f(Z,6 (t 1 = f(t,0p). Using
Denote O« gt(t) [f(t 9) 89 f( )]g_gl'p:( ) and fl’l f( 0} L'illlb
Lemma 3.1 with m = 2, by = fo and hy = g., for the expectation of the random

variable on the left-hand side of (3.7), we obtain as T' = o0
B[ [ 0| gy 60, ¢4 = 7 g U0 o)

(3.8) — -‘/% f_ & (,a,-(,\)m% In £(A, 8) dA = by (60).

Next, using Lemma 3.1 with m = 4, hy = hy = fo and hy = hy = g., for the
variance of the random variable on the left-hand side of (3.7), we obtain as T' —

69 o[o= [ =0 [ﬁg‘g—w(t. ). i) )

(3.10) = s i [(Wr(fo)Wa(0.))") — 0.

Now (3.7) follows from (3.8), (3.9) and Chebyshev inequality. Lemma 3.5 is proved.
The result that follows is well-known (see [2], [3]).

Lemma 3.6. Assume that a random vector nr = (m7,.-.,Mnt) has limiting
N(0,A4) normal distribution (as T — o0). Then the limiling distribution of the
random variable Wpnr = Y- iy coincides with the distribution of 377_, M;€7,
where €, j = 1,n, are iid N(0,1) random variables, while the numbers A; (7 = 1,n)
are the eigenvalues of matriz A. In particular, if A is an idempotent maltriz, that is,
A% = A, then nhmr has limiting x*—distribution with k = tr[A] degrees of freedom,
where tr[A] stands for the trace of matriz A.

4. PROOFS

Proof of Theoremn 2.1. The result irmmediately follows from Lemma 3.2 and the

definition of x?-distribution. Indeed, applying Lemma 3.2 with g; = f/i;, where

@, J = 1,2,...m, satisfy (1.4), and using Cramér-Wold device (Lemma 3.3), we

conclude that the random vector &, given by (1.2) and (1.3), has asymptotically

N(0, I, )-normal distribution as T' — oo, where I, is m x m identity matrix, and
18
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the components @, and ®;r are asymptotically uncorrelated for k £ j. Therefore,
the result follows from (1.5) and the definition of x*-distribution. a

Proof of Theorem 2.2. By (2.2) and Lemma 3.5, for T — oo we have the asymptotic

relation

or(0r) = ®r(60) — B(6o) VT(8r — bo) + 0p(1)
(4.1) = ®1(6g) — B(8o) T~ (60)Ar(6o) + 0p(1).
The last relation can be written in the form
(42) @1 (Br) = Ur(6o) + [Vr(6o) = Wr(6o)] + op(1),
where

(4.3) Ur(0o) = A(Bo)®7(f0).  A(Bo) = Im — B(80)(B’(80) B(60)) ™" B’ (fo),

(4.4) Vir(8) = B(60) (B' (60) B(60)) ™ B (60) @1 (o),
(4.5) Wr(6) = B(60) T~*(60) A1 (0o)-

It is casy to scc that

(4.0) A(60)B(6) = 0.

Hence Uz (80)Vir(0o) = Uin(80)Wr(8o) = 0. Therefore, by (4.2)
(4.7) &'y (Br)®7(0r) = Up(60)Ur(60)+

+[Vr(80) — Wr(6o)]' [V () — Wr(60)] + op(1).
It follows from Lemima 3.4 and (4.6) that
E[UT(&O){VT(EO) bsad W'r(&;))'] —+0 asT — oo.

Hence the terms on the right-hand side of (4.7) are asymptotically independent
random variables. Next, it is easy to check that the matrix A(6p) in (4.3) is
idempotent A%(6p) = A(fp) and tr[A(fp)] = m — p. Applying Lemmas 3.4 and 3.6
we conclude that the random variable Uj(89)Ur(fp) has limiting x?-distribution
with m — p degrees of freedom. '

To describe the limiting distribution of the second term on the right-hand side
of (4.7), we first observe that by Lemma 3.4
(4.8)
E[(Vr(80)~Wr(60))(Vr(8o)—Wr(60))'] — B(6o) [(B'(60)B(60)) "' —T " (60)] B (6o)
as T —+ oo. Therefore, by Lemma 3.6 the limiting distribution of the random
variable

[Vir(80) — W (60)] [Vir(80) — Wr(60)]’
19
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P

coincides with the distribution of the sum Zu_,- Em—p+j» Where &, 5 = T,m, are
i=1

iid N(0.1) random variables, while the numbers v (k = 1,p) arc the non-zero

eigenvalues of the matrix on the right-hand side of (4.8). By Lemma 4.3 from [3]
the numbers v (k = 1,p) coincide with the nonzero eigenvalues of the matrix
B'(00)B(00) [(B'(00)B(0))~* — T~'(fp)], that is, v are the roots relative to v of
equation

(4.9) det [B'(00) B(00) [(B'(60)B(00))~" — T~ (0o)] — v1,] = 0.

Since the matrix I'(fp) is non-singular (4.9) is equivalent to (2.6).
To show that 0 < v, < 1 for k = I, p, first observe that by Lemma 3.4

(4.10)

E[(At(0) — B'(60)®1(60)] [Ar(fa) - B'(ﬁ’n)‘l"r(@n)]’ — T'(60) — B'(0)B(0)
as T — oo. Hence the matrix I'(fp) — B'(60) B(fo) is nonnegative definite. Therefore
(1 — v)T'(6p) — B(0p)B(6a) > 0 for » < 0. On the other hand, since T'(0y) > 0
and B'(Ay)B(0) > 0 we have (1 — »)T'(0p) — B'(6p)B(0p) < 0 for v > 1. Thus,
0<y <L a
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